ConocoPhillips Company **PTRRC** Ronald G. Crouch PTRRC Advisor 4001 Penbrook St., Ste. 345 Odessa TX, 79762 Phone (432) 368-1218 Cell (432) 631-5557 January 13, 2010 RECEIVED APR 0 1 2010 **HOBBSOCD** Bureau of Land Management Attn: Natural Resource Specialist 620 East Greene Carlsbad New Mexico 88220 Re: Warren Unit 346 30 -025 - 39727 Section 27 Tage Lea County, New Mexico Lea County, New Mexico Warren Unit 355 Section 27, T20S-R38E Warren Unit 347. Section 27, T20S-R38E Lea County, New Mexico Warren Unit 356 Section 27, T20S-R38E Lea County, New Mexico Warren Unit 354 Section 34, T20S-R38E Lea County, New Mexico Settlement has been reached between the surface owner and ConocoPhillips Company for the above mentioned well location and appurtenances. The surface owner is: Robert McCasland P.O. Box 206 Eunice, NM 88231 If you have any questions, please contact me. Sincerely. Ronald Crouch PTRRC Advisor ConocoPhillips Company #### DRIVING DIRECTIONS FROM THE INTERSECTION OF STATE HIGHWAY 176 AND STATE HIGHWAY 18 2 MILES EAST OF EUNICE, NEW MEXICO, GO NORTH ON SAID HIGHWAY 18 7.2 MILES TO A LEASE ROAD ON WEST (LEFT) SIDE OF HIGHWAY, THEN GO WEST ON LEASE ROAD 0.9 MILE TO ANOTHER LEASE ROAD ON NORTH (RIGHT) SIDE OF ROAD, THEN GO NORTH 0.2 MILE TO ANOTHER LEASE ROAD ON EAST (RIGHT) SIDE OF ROAD, THEN GO EAST 0.4 MILE TO A POINT WHERE A NEW ACCESS ROAD BEGINS ON SOUTH (RIGHT) SIDE OF ROAD, THEN GO SOUTH 168 FEET TO THE PROPOSED LOCATION. 110 W. LOUISIANA, STE. 110 MIDLAND TEXAS, 79701 (432) 687-0865 - (432) 687-0868 FAX #### # **CONOCOPHILLIPS** ### WARREN UNIT #346 Located 2430' FNL & 2430' FEL, Section 27 Township 20 South, Range 38 East, N.M.P.M. Lea County, New Mexico | Drawn By: LVA | Date: December 17, 2009 | | | | | | | |--------------------------|-------------------------------|--|--|--|--|--|--| | Scale: 1" = 100' | Field Book: 464 / 1-25, 48-51 | | | | | | | | Revision Date: 3/01/2010 | Quadrangle: Hobbs SW | | | | | | | | W.O. No: 2010-0142 | Dwg. No.: L-2009-0797-A | | | | | | | # LOCATION VERIFICATION MAP HOBBS SW - 5 SEC. 27 TWP. 20-S RGE. 38-E SURVEY N.M.P.M. COUNTY LEA DESCRIPTION 2430' FNL & 2430' FEL ELEVATION 3549' OPERATOR CONOCOPHILLIPS LEASE WARREN UNIT U.S.G.S. TOPOGRAPHIC MAP HOBBS SW # VICINITY MAP SEC. 27 TWP. 20-S RGE. 38-E SURVEY N.M.P.M. COUNTY LEA DESCRIPTION 2430' FNL & 2430' FEL ELEVATION 3549' OPERATOR CONOCOPHILLIPS LEASE WARREN UNIT ## Warren 346 | Formation Tops and Planned Total Depth | | | | | | | |--|-------------|--|--|--|--|--| | Formation Call Points | Top (ft MD) | | | | | | | Rustler | 1497 | | | | | | | Salado | 1589 | | | | | | | Yates | 2804 | | | | | | | Blinebry | 5765 | | | | | | | Tubb | 6438 | | | | | | | Abo | 7016 | | | | | | | Total Depth (minimum) | 7171 | | | | | | | Total Depth (maximum) | 7116 | | | | | | | Casing Depths | | | | | | | | | |------------------------------------|------|------|--|--|--|--|--|--| | String Minimum Depth Maximum Depth | | | | | | | | | | Surface Casing | 1522 | 1567 | | | | | | | | Production Casing | 7161 | 7106 | | | | | | | Note: The Surface Casing and the Production Casing programs reflect an uncertainty of 45' in the setting depth for the shoe because that is the approximate length of a full joint of Range 3 casing. This range for the setting depth will allow us to drill the hole to fit the casing string based on how the tally comes out and will provide for the cementing head to be positioned at the rig floor for safety and efficiency in cementing operations. The casing will be set approximately 10 ft off bottom. | PRODUC | PRODUCTION CASING | | | | | | | | | | | | | | |--------|-------------------|--------|-------|-------|------|-------|-------|-----------|-------|-------|--------|------|----------|--------| | Size | TVD | Feet | Wt | | | ID | Drift | Max
OD | Burst | Coll. | Joint | MU | Torq (ft | :-lbs) | | (in) | (ft) | (ft) | (ppf) | Grade | Conn | (in) | (in) | (in) | (psi) | (psi) | (klbs) | Min | Opt | Max | | 5-1/2" | 1,000' | 1,000' | 17 | L-80 | LT&C | 4.892 | 4.767 | 6.050 | 7740 | 6290 | 338 | 2560 | 3410 | 4260 | | 5-1/2" | 7,150' | 7,150' | 17 | J-55 | LT&C | 4.892 | 4.767 | 6.050 | 5320 | 4910 | 247 | 1850 | 2470 | 3090 | Note: If stuck call Drilling Superintendent. Max pull allowed is 71% of weakest component. Casing connection failure point 247K ALLOWED PULL IS 247(.71) = 175K #### **Shoe Track:** - Float Shoe - 1 joint casing - Float Collar #### Centralizers: 1. on joint between float shoe and float collar over Stop Collar 1 on joint above float collar on casing collar 1 every 3rd joint above casing collar to surface #### **Marker Joints:** Place one 20'x20' double marker joint positioned with the top of the joint at approximately 5,400' MD RKB Place one 20'x20' double marker joint positioned with the top of the joint at approximately 6,200' MD RKB ## Master Drilling Plan ConocoPhillips Company SEMU and Warren Unit July 17, 2008 Lea County, New Mexico Pool: Blinebry, Tubb, Drinkard <u>UNIT AREA:</u> Leases in the following Sections, Townships and Ranges that ConocoPhillips Company operates. Lease numbers as follows, but not limited to: #### **Southeast Monument Unit** | Lease | Suffix | Lessor | Township | Range | Section | QQ | |--------|--------|-------------|----------|-------|---------|------------| | 155692 | 000 | NM 557686 | 20 | 37 | 13 | S2SW | | 155692 | 000 | NM 557686 | 20 | 37 | 13 | SE | | 265155 | 000 | NMNM 90161 | 20 | 37 | 13 | NWSW | | 265155 | 000 | NMNM 90161 | 20 | 37 | 13 | SWNE | | 155692 | 000 | NM 557686 | 20 | 37 | 14 | NWNE | | 155692 | 000 | NM 557686 | 20 | 37 | 14 | S2NE | | 155692 | 000 | NM 557686 | 20 | 37 | 14 | SE | | 155692 | 000 | NM 557686 | 20 | 37 | 14 | W 2 | | 017994 | 000 | LC 031621B | 20 | 37 | 15 | E2E2 | | 155692 | 000 | NM 557686 | 20 | 37 | 22 | E2NE | | 271248 | 000 | NM 557686 | 20 | 37 | 22 | E2SE | | 155692 | 000 | NM 557686 | 20 | 37 | 23 | Ail | | 155692 | 000 | NM 557686 | 20 | 37 | 24 | N2N2 | | 020643 | 000 | LC 031620A | 20 | 37 | 24 | S2 | | 020643 | 000 | LC 031620A | 20 | 37 | 24 | S2N2 | | 018625 | 000 | LC 031696A | 20 | 37 | 25 | N2S2 | | 018625 | 000 | LC 031696A | 20 | 37 | 25 | S2NE | | 018625 | 000 | LC 031696A | 20 | 37 | 25 | S2NW | | 020643 | 000 | LC 031620A | 20 | 37 | 25 | N2N2 | | 018625 | 000 | LC 031696A | 20 | 37 | 26 | NE | | 018625 | 000 | LC 031696A | 20 | 37 | 26 | N2SE | | 018625 | 000 | LC 031696A | 20 | 37 | 26 | SESE | | 155818 | 000 | NMNM 002511 | 20 | 37 | 26 | SWSE | | 155818 | 000 | NMNM 002511 | 20 | 37 | 26 | W2 | | 155818 | 000 | NMNM 002511 | 20 | 37 | 27 | E2E2 | #### Warren Unit | Lease | Suffi | x | Township | Range | Section | QQ | |--------|-------|------------|----------|-------|---------|------| | 018642 | 000 | LC 031670B | 20 | 38 | 20 | SE | | 018642 | 000 | LC 031670B | 20 | 38 | 21 | SW | | 018642 | 000 | LC 031670B | 20 | 38 | 21 | W2SE | Master Drilling Plan - SEMU and Warren Unit (Date: July 17, 2008) | 032310 | 000 | LC 061983 | 20 | 38 | 21 | E2SE | |--------|-----|------------|----|------|------|------| | 018642 | 000 | LC 031670B | 20 | 38 | 22 | S2S2 | | 006710 | 000 | LC 063458 | 20 | 38 | 25 | W2 | | 006710 | 000 | LC 063458 | 20 | 38 | 26 | ALL | | 018642 | 000 | LC 031670B | 20 | 38 | 27 | N2N2 | | 019406 | 000 | LC 031695B | 20 | 38 | 27 | S2 | | 019406 | 000 | LC 031695B | 20 | 38 | 27 | S2N2 | | 018642 | 000 | LC 031670B | 20 | . 38 | . 28 | N2N2 | | 019406 | 000 | LC 031695B | 20 | 38 | 28 | S2 | | 019406 | 000 | LC 031695B | 20 | 38 | 28 | S2N2 | | 018642 | 000 | LC 031670B | 20 | 38 | 29 | N2NE | | 019405 | 000 | LC 031695A | 20 | 38 | 29 | W2SW | | 019406 | 000 | LC 031695B | 20 | 38 | 29 | E2SW | | 019406 | 000 | LC 031695B | 20 | 38 | 29 | S2NE | | 019406 | 000 | LC 031695B | 20 | 38 | 29 | SE | | 019406 | 000 | LC 031695B | 20 | 38 | 33 | ALL | | 006710 | 000 | LC 063458 | 20 | 38 | 34 | ALL | | 006710 | 000 | LC 063458 | 20 | 38 | 35 | ALL | | | | | | | | | If drilling is proposed on additional leases, the BLM will be advised when they are proposed. #### 1. Geologic Name of Surface Formation: Quaternary #### 2. Estimated tops of geological markers and estimated depths to water, oil, or gas formations: In SEMU and Warren Unit, the estimated tops of the geological markers and proposed Total Depth (TD) vary within a range of as much as 590'. The range of minimum to maximum depth for these markers and proposed TD range is presented in the table below. The datum for these depths is RKB (which is 10' - 12' above Ground Level). | Formation Call | Format
FT | Thickness | | Contents | | |----------------------|--------------|-----------|------------|----------|--------------------| | | Minimum | Maximum | um Min Max | | | | Above top of Rustler | | | | | Fresh Water | | Rustler | 1210 | 1620 | 84 | 140 | | | Salado | 1295 | 1740 | 1115 | 1350 | | | Artesia Group | 2530 | 2745 | 1400 | 1500 | Gas and Oil | | Yeso Group | 5275 | 5690 | 1300 | 1700 | Oil and Salt Water | | Proposed TD | 6910 | 7500 | | | | Note: For each individual well we will include with the APD package our correlation pick depths for the formation tops and proposed TD for that individual well. Protection of fresh water will be accomplished by setting the surface casing 25' - 70' into the Rustler Anhydrite formation and **cementing** the surface casing from the casing shoe **to the surface of ground** in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19. #### 3. Proposed casing program: | T | Hole
Size | N | Interval
ID RKB (ft) | OD | Wt | Gr | Conn | Condition | Safety Factors
Calculated per BLM Load Formulas | | | |----------|--------------|------|------------------------------|----------|---------|------|------|-----------|--|----------|------------------------| | Туре | (in) | From | То | (inches) | (lb/ft) | | | | Burst | Collapse | Tension
Dry/Buoyant | | Cond | 17-1/2" | 0 | 40' – 85'
(30' – 75' BGL) | 13-3/8" | 48# | H-40 | STC | New | NA | NA | NA | | Surf | 12-1/4" | 0 | 1235'– 1690' | 8-5/8" | 24# | J-55 | STC | New | 4.03 | 1.83 | 6.02 / 6.91 | | Prod | 7-7/8" | 0 | 1000' | 5-1/2" | 17# | L-80 | LTC | New | 1.98 | 1.61 | 2.65 / 3.13 | | · | 7-7/21 | 1000 | TD | 5-1/211 | 174 | 7-55 | LTC | New | | | | We propose to set the surface and production casing approximately 10' off bottom and to drill the hole to fit the casing string so that the cementing head is positioned at the floor for the cement job. #### Casing Design (Safety) Factors - BLM Criteria: Joint Strength Design (Safety) Factor: SFt SFt = Fj / Wt; Where - Fj is the rated pipe Joint Strength in pounds (lbs) - Wt is the weight of the casing string in pounds (lbs) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT = 1.6 dry or 1.8 bouyant Collapse Design (Safety) Factor: SFc $SFc = Pc / (MW \times .052 \times Ls)$ Where - Pc is the rated pipe Collapse Pressure in pounds per square inch (psi) - MW is mud weight in pounds per gallon (ppg) - Ls is the length of the string in feet (ft) The Minimum Acceptable Collapse Design (Safety) Factor SFc = 1.125 Burst Design (Safety) Factor: SFb SFb = Pi / BHP Where - Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (psi) - BHP is bottom hole pressure in pounds per square inch (psi) The Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0 #### Joint Strength Design (Safety) Factors – BLM Criteria Surface Casing: - SFj Dry = 244,000 lbs / $(1690 \text{ ft} \times 24 \text{ lb/ft}) = 244,000 \text{ lbs} / 40,560 \text{ lbs} = 6.02 \text{ Dry}$ - SFj Bouyant = 244,000 lbs / (1690 ft x 24 lb/ft) [1-(8.5/65.5)= 244,000 lbs / 35,296 lbs = 6.91 Bouyant Production Casing: - SFj Dry = 338,000 lbs / (7500 ft x 17 lb/ft) = 338,000 lbs / 127,500 lbs = 2.65 Dry - SFj Bouyant = 338,000 lbs / (7500 ft x 17 lb/ft) [1-(10.0/65.5)= 338,000 lbs / 108,034 lbs = 3.13 Bouyant #### Collapse Design (Safety) Factors - BLM Criteria Surface Casing: SFc = 1370 psi / (8.5 ppg x .052 x 1690 ft) = 1370 psi / 747 psi = 1.83 **Production Casing:** SFc = 6290 psi / (10 ppg x .052 x 7500 ft) = 6290 psi / 3900 psi = 1.61 #### Burst Design (Safety) Factors - BLM Criteria Surface Casing: SFb = 2950 psi / (8.33 ppg x .052 x 1690 ft) = 2950 psi / 732 psi = 4.03 **Production Casing:** SFb = 7740 psi / (5.13 ppg x .052 x 7500 ft) = 7740 psi / 2400 psi = 3.23 based on reservoir pressure data SFb = 7740 psi / (10 ppg x .052 x 7500 ft) = 7740 psi / 3900 psi = 1.98 based on brine density used to drill to TD #### Casing Design (Safety) Factors - Additional ConocoPhillips Criteria: ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design. ConocoPhillips Corporate Criteria for Minimum Design Factors | | Burst | Collapse | Axiál | |-----------------------|-------|----------|-------| | Casing Design Factors | 1.15 | 1.05 | 1.4 | #### Surface Casing: The maximum internal (burst) load on the Surface Casing occurs when the surface casing is tested to 1500 psi. We will pressure up to 1600 psi and let the pressure settle for 1 minute after shutting down the pump. Then we will begin the 30 minute test period. Therefore the maximum pressure that the surface casing will be exposed to will be 1600 psi. Surface Casing Burst Design Factor DF Burst = Burst Rating / Maximum Pressure During Casing Pressure Test = 2950 psi / 1600 psi = 1.84 The maximum collapse load on the Surface Casing occurs when we release the pressure after bumping the plug on the surface casing cement job. Surface Casing Collapse Design Factor DF Collapse = Collapse Rating / (Cement Column Hydrostatic Pressure – Displacement Fluid Hydrostatic Pressure) DF Collapse = 1370 psi / {[(300 ft x .052 x 14.8 ppg) + (1390 ft x .052 x 13.5 ppg)] - (1690 ft x .052 x 8.33 ppg)} DF Collapse = 1370 psi / 475 psi DF Collapse = 2.88 The maximum axial load on the Surface Casing would be the buoyant weight of the full string of casing plus an allowance for potential overpull in the amount of 100,000 lbs. Surface Casing Axial (Tension) Design Factor DF Tension = Joint Strength Rating / (Bouyant Weight + Overpull Margin) Bouvancy Factor for fresh water (8.34 ppg fluid) = 1 - (8.34 / 65.5) = .873 Overpull Margin is selected to be 100,000 lbs DF Tension = 244,000 lbs / [(1690 ft x 24 lb/ft x .873) + 100,0000 lbs] DF Tension = 244,000 lbs / 135,408 lbs DF Tension = 1.80 #### **Production Casing:** The maximum internal (burst) load would occur either during during fracture initiation or screen out. Fracture initiation occurs with 2% KCL water in the hole and a maximum of 5000 psi surface pressure. Screen out might occur with up to 12 ppg frac fluid in the hole. For the fracture initiation load case, the design factor calculated at surface is: DF Burst @ Surface for Fracture Initiation = Burst Rating / Maximum Applied Surface Pressure DF Burst @ Surface for Fracture Initiation = 7740 psi / 5000 psi DF Burst @ Surface for Fracture Initiation = 1.54 For the fracture initiation load case, the design factor calculated at TD is: DF Burst @ TD for Fracture Initiation = Burst Rating / (Internal Pressure - Pore Pressure) Internal Pressure at TD = Surface Pressure + Hydrostatic Pressure at TD of 2% KCL Water Column Hydrostatic Pressure at TD of 2% KCL Water Column = 7500 ft x .052 x 8.6 ppg = 3354 psi Surface Pressure at the time of Fracture Initiation = 5000 psi maximum Internal Pressure at TD = 5000 psi + 3354 psi = 8354 psi Pore Pressure in the Reservoir = 2000 psi approximately DF Burst @ TD for Fracture Initiation = 7740 psi / (8354 psi - 2000 psi) DF Burst @ TD for Fracture Initiation = 7740 psi / 6354 psi DF Burst @ TD for Fracture Initiation = 1.22 For the screen out load case, the maximum burst loading occurs at TD and is calculated as follows: DF Burst @ TD for Screen Out = Burst Rating / (Internal Pressure – Pore Pressure) Internal Pressure at TD = Surface Pressure + Hydrostatic Pressure at TD of 12 ppg frac fluid Hydrostatic Pressure at TD of 12 ppg frac fluid = 7500 ft x .052 x 12.0 ppg = 4680 psi Maximum Allowable Surface Pressure at the time of Screen Out = 4050 psi maximum Internal Pressure at TD at time of Screen Out = 4050 psi + 4680 psi = 8730 psi Pore Pressure in the Reservoir = 2400 psi approximately DF Burst @ TD for Fracture Initiation = 7740 psi / (8730 psi - 2400 psi) DF Burst @ TD for Fracture Initiation = 1.15 The maximum collapse load on the production casing occurs with the well pumped off on production. The maximum potential pore pressure in the well would be equal to or less 10 ppg which is the density of the brine drilling fluid used in drilling production hole interval from the Surface Casing Shoe to TD. DF Collapse = Collapse Rating / Maximum Possible Pore Pressure DF Collapse = 6290 / (10 ppg x .052 x 7500 ft) = 6290 psi / 3900 psi = 1.61 DF Burst @ TD for Fracture Initiation = 7740 psi / 6730 psi Production Casing Axial (Tension) Design Factor DF Tension = Joint Strength Rating / (Bouyant Weight + Overpull Margin) Bouyancy Factor for 10 ppg brine = 1 - (10.0 / 65.5) = .847 Overpull Margin is selected to be 100,000 lbs DF Tension = 338,000 lbs / [(7500 ft x 17 lb/ft x .847) + 100,0000 lbs] DF Tension = 338,000 lbs / (107,993 lbs + 100,000 lbs) DF Tension = 338,000 lbs / 207,993 lbs DF Tension = 1.63 #### 4. Proposed cementing program: #### 13-3/8" Conductor: Cement to surface with rat hole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" dia) TOC at surface. #### 8-5/8" Surface Casing: The intention for the cementing program for the Surface Casing is to: • Place the Tail Slurry from the casing shoe to 300' above the casing shoe, • Bring the Lead Slurry to surface. Spacer: 20 bbls Fresh Water | Lead Slurry | | | | | | | | | |--|----------------|---------------------|---------------------|------------------|--------------------|-------------------|--|--| | Volume (sx)
& Recipe & Excess % | Top
(ft MD) | Bottom
(ft MD) | Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx | Compressive Strengths @ 95 deg F by UCA Method | | | 433 sx - 644 sx
Class C
+ 4% bentonite
+ 2% CaCl2
+ 0.125% Polyflake | Surface | 935'
to
1390' | 935'
to
1390' | 13.5 | 1.96 | 10.69 | Time
6 hrs
12 hrs
24 hrs
48 hrs | Strength
320 psi
514 psi
589 psi
601 psi | | Excess = 120% | | - | | | | | |] | | Tail Slurry | | | | | | | | | |--|---------------------|----------------------|----------------|------------------|--------------------|-------------------|--|--| | Volume (sx)
& Recipe & Excess % | Top
(ft MD) | Bottom
(ft MD) | Length
(ft) | Density
(ppg) | Yield
(cuft/sx) | Mix Wtr
gal/sx | Compressive Strengths
@ 91 deg F by UCA Method | | | 200 sx
Class C
+ 2% CaCl2
+ 0.125% Polyflake
Excess = 100% | 935'
to
1390' | 1235'
to
1690' | 300'
350' | 14.8 | 1.35 | 6.36 | Time
3 hrs
9 hrs
12 hrs
24 hrs
48 hrs | Strength
50 psi
500 psi
793 psi
1266 psi
2183 psi | Displacement: Fresh Water Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater. #### 5-1/2" Production Casing Cementing Program: The intention for the cementing program for the Production Casing is to: - Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Yeso group, - Bring the Lead Slurry to surface. Spacer: 20 bbls Fresh Water. | Lead Slurry | | | | | | | | | |--|----------|---------|--------|---------|-----------|---------|-----------------------|--------------| | Volume (sx) | Тор | Bottom | Length | Density | Yield | Mix Wtr | Compressive Strengths | | | & Recipe & Excess % | (ft MD) | (ft MD) | (ft) | (ppg) | (cuft/sx) | gal/sx | @ 113 deg F by (| Crush Method | | 683 – 1065 sx | Surface | 5075' | 5075' | 11.8 | 2.51 | 14.64 | Time | Strength | | 50% Class C | | to | to | | 1 | | 12 hrs | 93psi | | 50% POZ | | 5490' | 5490' | | | | 24 hrs | 234 psi | | + 10% bentonite | | 0-30 | 0,00 | | | | 48 hrs | 382 psi | | , | | | | | | | 72 hrs | 468 psi | | + 8 lb/sx Salt | i | | | | | | 116 hrs | 584 psi | | + 0.4% Fluid Loss Additive | ! | | | | | | | | | + 0.125%LCM if needed | | | | | <u> </u> | | <u> </u> | | | Excess = 86% - 166% (based on caliper if available) (estimated average hole size = 9.40" - 10.75") | | | | | | | | | | Excess = 86% - 16 | 66% (based on cali | iper if available) (estimate | ed average hole size = 9. | .40" — 10.75") | |-------------------|--------------------|------------------------------|---------------------------|----------------| |-------------------|--------------------|------------------------------|---------------------------|----------------| | Tail Slurry | T | | 1 | | | | · · · · · · · · · · · · · · · · · · · | | |----------------------------|---------|---------|--------|---------|-----------|---------|---------------------------------------|----------------| | Volume (sx) | Тор | Bottom | Length | Density | Yield | Mix Wtr | Compressive Strengths | | | & Recipe & Excess % | (ft MD) | (ft MD) | (ft) | (ppg) | (cuft/sx) | gal/sx | @ 113 deg F b | y Crush Method | | 304 – 520 sx | 5075' | 6910' | 1835' | 14.2 | 1.32 | 6.20 | Time | Strength | | 50% Class C | to | to | to | | | | 12 hrs | 800 psi | | 50% POZ | 5490' | 7500' | 2010' | | | | 24 hrs | 1100 psi | | + 2% Bentonite | | | | | 1 | | 48 hrs | 1410 psi | | + 5% Salt | | | | |] | | 72 hrs | 1720 psi | | + 0.4% Fluid Loss Additive | | | | | | | | | | + 0.4% Dispersant | | | | | | | | | | + LCM if needed | | | | | 1 | | | | Displacement: 2% KCL water with approximately 250 ppm gluteraldehyde biocide. #### Proposal for Option to Adjust Production Casing Cement Volumes: The production casing cement volumes presented above are estimates based on data from previous wells. We propose an option to adjust these volumes based on the caliper log data for each well if available. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volumes to account for any uncertainty in regard to the hole volume. #### 5. Pressure Control Equipment: The blowout preventer equipment (BOP) will consist of 11", 2M equipment to conform to the requirements for a 2M System as described in Onshore Oil and Gas Order No. 2, III.A.2.a.ii. The blowout preventer equipment will be installed after running and cementing the surface casing and installing the wellhead and will be tested by a third party using a test plug. Ram type preventers and associated equipment will be tested to approved stack working pressure of 2000 psi. Annular type preventers, if used, will be tested to 50 percent of rated working pressure, and therefore will be tested to 1000 psi. The above tests will be performed: - When initially installed - Whenever any seal subject to test pressure is broken - Following related repairs, and - At 30 day intervals Annular preventers, if used, will be functionally operated at least weekly. Pipe and Blind rams shall be activated each trip, but not more than once per day. All of the above described tests will be recorded in the drilling log. A diagram of the proposed BOPs and choke manifold is attached. #### 6. Proposed Wellhead Program: Casing Head: 8-5/8" Slip on and Weld x 11" 5M Casing Head installed on 8-5/8" surface casing Tubing Head: 11" 5M x 7-1/6" 5M Tubing Head installed after setting 5-1/2" production casing #### 7. Proposed Mud System The mud systems that are proposed for use are as follows: | DEPTH | TYPE | WEIGHT | VISCOSITY | WATERLOSS | |----------------------------|------------------------|---------------|-------------|------------------| | 0 - Surface Casing Point | Fresh Water Native Mud | 8.5 – 9.0 ppg | 28 – 40 sec | N.C. | | Surface Casing Point to TD | Brine | 10 ppg | 29 sec | N.C. | | Conversion to Mud at TD | Brine Based Mud | 10 ppg | 34 – 45 sec | 5 – 10 cc/30 min | 12-1/4" hole from surface of ground to surface casing point: The circulating media will be either a native mud or fresh water with high viscosity sweeps. The mud components will be: - Fresh Water - Bentonite (if needed) - Lime - Soda Ash - Starch (if needed) - Drilling Paper - · Other loss of circulation material if needed (nut plug or fiberous material) - Soap sticks (if needed) 7-7/8" hole from the surface casing shoe to TD: The circulating media will be 10 ppg brine and will be converted to a mud with starch, attapulgite, and lime upon reaching Total Depth (TD). The mud components will be: - Brine (approximately 10 lb/gal density) - Attapulgite - Lime - Starch - Drilling Paper - Other loss of circulation material if needed (nut plug, fiberous material, gilsonite, or asphalt) - Soap Sticks if needed - · Lease crude oil as a spotting fluid if needed in the event of differential sticking # 8. Logging, Coring, and Testing Program: 500 COA - a. No drill stem tests will be done - b. No mud logging is planned, but might possibly be done if it is determined that this data is needed; - c. No whole cores are planned - d. The open hole electrical logging program is planned to be as follows: - Total Depth to 2500': Resistivity, Density, and Gamma Ray. - Total Depth to Surface Casing Shoe: Caliper - Total Depth to 200' MD, Gamma Ray and Neutron - Formation pressure data (XPT) on electric line if needed (optional) - Rotary Sidewall Cores on electric line if needed (optional) - BHC Sonic if needed (optional) - Spectral Gamma Ray if needed (optional) #### 9. Abnormal Pressures and Temperatures: - No abnormal pressures or temperatures are expected to be encountered. - o Note: We do not anticipate water flows or CO₂ flows. - The expected bottom hole temperature is 113 degrees F. - The expected bottom hole pressure is 2400 psi. Maximum anticipated surface pressure (MASP) is: MASP= BHP- $$(.22 \text{ X TVD})$$ so MASP = $2403 - (.22 \text{ X 6467}) = 980 \text{ psi}$ • The estimated H₂S concentrations in the Warren Unit and SEMU are presented in the table below for the various producing horizons in this area: | FORMATION / ZONE | H2S
(PPM) | Gas Rate
(MCFD) | ROE
100 PPM | ROE
500 PPM | |------------------|--------------|--------------------|----------------|----------------| | Artesia Group | 28000 | 20 | 70 | 32 | | Yeso Group | 1559 | 210 | 50 | 22 | ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations and will provide H_2S monitoring equipment which will be rigged up, tested, and operational prior to drilling out from surface casing. All persons arriving on location will have H_2S certification & training that occurred within the last year. Each occurrence of H_2S gas at surface is to be noted on the daily reports and any occurrence of H_2S in excess of 100 ppm will be reported to the authorized officer as soon as possible but no later than the next business day per the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H_2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during drilling operations. #### 10. Anticipated starting date and duration of operations: Road and location construction will begin after the BLM and NMOCD have approved the APD and will take into account any closure stipulations that may be attached or specified in order to avoid operations in any closure period. Also, rig availability may impact our schedule. With consideration of these limiting factors, we would intend / plan to drill the wells in our proposed program SEMU and Warren Unit within two years after receiving approval of the APD. ## Attachments: - Attachment # 1...... Proposed Casing and Cementing Program - Attachment # 2...... Diagram of Choke Manifold Equipment (Excerpted 54 FR 39528, Sept 27, 1989) - Attachment # 3...... BOP and Choke Manifold Schematic 2M System (Figure 3-1, Appendix G, from BLM) - Attachment # 4 BOP and Choke Manifold Schematic 2M System (Figure 3-1A, Appendix G, from BLM) ## **Contact Information:** Program prepared by: Jason Tilley, Drilling Engineer, ConocoPhillips Company Phone (832) 486-2919 Cell (281) 684-4720 Date: July 17, 2008 # ConocoPhillips Location Schematic and Rig Layout for Closed Loop System H&P #306 6" Flanged steel flare/panic line with igniter (Buried) (PICTURE NOT TO SCALE) Choke Manifold on mud system 10' Return Line from Mud Gas Separator Mud Gas Separator Flare Boom 150' from wellhead 90' 75' 20' Choke Line from BOP 40' Normal Flow Line Storage Tank 15' **Buried Vent Line** N Prevailing Wind Centrifuge & Mud pits Cuttings Bins **Mud Gas Separator** & Choke Manifold 100' Water Tank Mud Pump House PIPE RACKS RIG 130' воом 130' Elec Room Driller's Cabin Engine Room Fuel misc Parts / Tools **CELLAR** 6'Diameter 155' **Access Road** Change House Toolpusher # ConocoPhillips Attachment # 1 # SEMU and Warren Unit Proposed Casing & Cementing Program Datum: RKB (12' above ground level) Conductor: 13-3/8" 48# H-40 ST&C set at 30' to 75' below ground level (42' to 87' MD RKB) and cemented to surface. Surface Casing: 8-5/8" 24# J-55 ST&C set in the Rustler formation and cemented to surface. Cement Wiper Plug Float Shoe, one joint of casing, and Float Collar Schematic prepared by: Steven O. Moore, Drilling Engineer 26 - March- 2008 A Single-Stage cement job is pumped placing cement from the Production Casing shoe to surface. Production casing: 5-1/2" 17# L-80 LT&C set 10' above TD and cemented to surface with single-stage cementing method. Master Drilling Plan - SEMU and Warren Unit (Date: July 17, 2008) Page 13 of 16 # Attachment I. Diagrams of Choke Manifold Equipment 2M CHOKE MANIFOLD EQUIPMENT - CONFIGURATION OF CHOKES MAY VARY Appendix G 000 psi System Appendix G