NEW MEXICO OIL CONSERVATION COMMISSION

HOBES OFFICE OCC

Form C-122
Revised 12-1-55

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS SEP 30 PM 2 51

Formation Sen Andres County

Pool _	W11	dest	Fc	rmation_	Se	n Andres	<u> </u>	County_	Los	
Initial		Ann	ual		Speci	ial	<u>x</u>	Date of	Test	9-18-58
Company	Lone	Star Produc	ing Com	Dany Le	ease	State-	King	We:	ll No	1
Unit _		Sec. <u>16</u> To	мр. <u>9</u> -	8 Rge	. <u>35-e</u>	Purcl	naser	Kom)	
Casing_	V	Vt	I.D	Set	at 481	5 Per	rf. 474	0	_To	և815
[ubing	2.375 V	vt. 4.70	I.D. 1.	995 _Set	at 473	Per	rf. / 192	0 0	То	1621 18
Gas Pay	r: From_	4740 To	4815	L L	740 x0	0.972		1:609	_Bar.Pre	ess. 13.2
		: Casing_				x	Type We	ell	Sincle	
		ion: Nov.				Sing	gle-Brade	enhead-G.	G. or (.O. Dual
					OBSERVE					
l'ested	Through	(Prover)	(Choke)	(Meter)				Type Ta	ps	Flance
		Flow I	Data			Tubing	Data	Casing	Data	I
No. (Prover)	(Choke)	Press.	Diff.	1			1	!	Duration of Flow
	Size	(Orifice) Size	psig	h _w	°F.			psig		Hr.
SI . 3.	000	0.000	-	7	49	11,33		Packer		al.
3.	000	2.000	50	37	67	522	71	Packer Packer	-	24
3. 3.	000	\$-000	13	22	66	629	70	Packer	-	3
10 3. 5. 3.		2,000	W	27	59	728	60	Pecker	-	3
<u>). ! 5.</u>	000	2,000	144	16	60	500	60	Packer		<u> </u>
т-	Coeffici	ient	Pr	aggura	Flow T	CULATIONS Cemp.	Gravity	Compr	ess.	Rate of Flow
10 ·	(2) 11-11	ır) $\sqrt{h_{v}}$			Fact	or	Factor	Facto	or	Q-MCFPD
	(24-Hou	ir) $\sqrt{n_v}$	v ^p f	psia	rt		r _g	¹ pv		@ 15.025 psia
. 27 2. 27	.52	58,1 1,6,0		3.2 Ser	0.9933		0.8715	1.00	1.08 H	1391
	.52	42.		7.2 3	0.9943		0.8715	1.00	0/095	1000 ////
. 27	.52	39.5	0 5	7-2 501V	1,0010	V	0.8715	1.00	0/0/25	963 43,/
27	-52		175	PRES	1.0000 SURE CA		0.8715 ~ Ons		39 7/39	7 % 10%, a
ıs Liqu	id Hydro	carbon Rati	io 21,	900 (of/bbl.	4.	Speci	ific Grav	ity Sepa	rator Gas 0.791
avity		id Hydrocari 6	oons (1-e ^{-s})	0.272	deg.		Speci P	ific Grav: 146,2	ity Flow P2	ring Fluid 1.10
		:	`		yr.		C			
P _w		Pt I	3.0	$(F_cQ)^2$	(P)	0)2	D 0	$P_c^2 - P_w^2$	Co	ıl. Pw
Pt	(psia)		F _c Q		(1-	Q) ² e-s)	P _w 2			11. P _W P _C
	5.2		1.3020	1.9099	0.5	2	267	1805		
	2.2	178.034		1.1944 1.0269	0.2		376	1716		1.2 0.576
. 7	1.2	549.377	0.9369	0.8777	0.2	24	549	1543	74,7	.2 0.487
	3.2		0.5944	0.5944	0.1	6	661	14,31	81.	3.7 O.435
	e Potent	ial:	1650		MCFPD;	n	1.000			
COMPANY ADDRESS		Route 1	er Freda	ding Com	la Texas					
	nd TITLE			troof,	Prod	Engr.			***	
COMPANY										
	The A	ectual curv	e elope	is great	REMA er then	RKS 1.000 •	o the 45	ourse a	1th slay	e equal te

1.000 was used. This setual flatness is due to excessive fluid being produced.

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure (P_W). MCF/da. @ 15.025 psia and 600 F.
- P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- PwT Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- P_{f} Meter pressure, psia.
- hw Differential meter pressure, inches water.
- FgI Gravity correction factor.
- Ft Flowing temperature correction factor.
- Fnv Supercompressability factor.
- n I Slope of back pressure curve.
- Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.