MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS Revised 12-1-55 | Init | | | | _ | | | | | 110050 | AT C | | |----------------|--|---|---|---|--|---|---|---|--------------------------|---|--| | | | | | | | | | | | mary 6, 19 | | | | | | | | | | | | | 1 | | | | . Н | ng 4 1/2 | | | | | | | | | | | | | ng 2 | | | | | | | | | | | | | Pay: From | | | | | | | | | | | | 'rod | ucing Thru | ı: Casi | .ng | Tu | ubing | X | Type We | 11 Si nc | വം | | | |)ate | of Comple | tion: | 12/13/6 | Packe | er404 | Sin
4 | gle-Brade
Reservo | enhead-G.
oir Temp. | G. or G. | O. Dual | | | | | | | | | ED DATA | | _ | | | | | 'e st o | ed Through | (Prove | r) (abol | ·) (Mahan) | | | | M m- | | | | | | | | | | ' | | | Type Tap | | | | | \top | (Prover) | (Chok | ow Data | ss. Diff. | Temp. | Tubing | Data Temp. | Casing D | | D | | | ٥. | (bine) | (Orifi | ee) | Į | | | , , | Press. | | Duration of Flo | | | | Size | Wellin | ed psi | g h _w | o _F . | psig | | | [⊃] F• | Hr. | | | | 2 X 3/16 | 18/61 | 100 | 6 | 67 | 1065
1046 | | Packer | | 72 | | | | 2 X 3/8 | 15/64 | | | 48 | 1016 | | | - | | | | | | 18/64 | |)5 | 57 | 960 | | | | 1 | | | - | 2 I 1/2 | 22/64 | 56 | 77 | 49 | 912 | | | | 1 | | |) • | .7851 | | h _w p _f psia | | •9933 | | F _g
-8660 | racto | e @ | @ 15.025 psi | | | Ŧ | | | | 1.00.3 | | 77 | 06.60 | | _ | | | | 1 | .7851
3.0691
3.0691 | | | 499•2
718•2 | 1.011 | | <u>.8660</u> | 1,10 | | 1476 | | | | 3.0691 | | | 499.2
718.2
520.2 | | 9 | .8660
.8660 | | 3 | 1476
2169
2751 | | | Li | 3.0691
3.0691 | id Hydro | carbons_ | 718.2
520.2
PRI | 1,011
1,002
1,010 | ALCULATIO | .8660
.8660
DNS
Specif | 1.10 1.13 1.09 Fic Gravit | y Separa | 2169
2751
ator Gas | | | Li | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936 | Pt | r _c Q | 718.2
520.2
PRI | 1.002
1.010
ESSURE CA
cf/bbl.
deg. | ALCULATIO | Special P _c 1 | 1.10 1.13 1.09 Fic Gravit | Separaty Flowin PC 1 | 2169
2751
ator Gas_
ng Fluid_
162.5 | | | Li | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936
Pt (psia) | P ² | rcarbons (1-e ^{-s} | 718.2
520.2
PRI
0.200 | 1.002
1.010
ESSURE CA
cf/bbl.
deg. | 2Q) ² -e-s) | .8660
.8660
ONS
Special
Pc_1 | 1.10
1.13
1.09
Fic Gravit
078.2 | y Separaty Flowin Pc 1 | 2169
2751
ator Gas_ng Fluid_
162.5 | | | Li | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936
Pt (psia)
1059.2
1029.2
973.2 | Pt | F _c Q 8.465 14.666 21.551 | 718.2
520.2
PRI
0.200
(F _c Q) ²
71.6
215.0 | 1.002
1.010
ESSURE CA
cf/bbl.
deg.
(F.
(1- | 20)2
-e-s) | .8660
.8660
ONS
Special
P _c _1 | 1.10
1.13
1.69
Fic Gravit
078.2 | y Separaty Flowin Pc 1 | 2169
2751
ator Gas_ng Fluid_162.5 | | | Li | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936
Pt (psia)
1059.2 | P ²
1121.9 | F _c Q 8.465 14.666 | 718.2
520.2
PRI
0.200 | 1.002
1.010
ESSURE CA
cf/bbl.
deg.
(F.
(1-
6 14
9 44 | 20)2
-e-s) | .8660
.8660
ONS
Special
Pc_1 | 1.10
1.13
1.09
Fic Gravit
078.2 | y Separaty Flowin Pc 1 | 2169
2751
ator Gas_ng Fluid_
162.5 | | | sol | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936
Pt (psia)
1059.2
1029.2
973.2
925.2 | Pt 1121.9 1059.3 947.1 856.0 | F _c Q 8.465 14.666 21.551 27.334 | 718.2
520.2
PRI
One
(F _c Q) ²
71.6
215.0
464.4
747.1 | 1.002
1.010
ESSURE CA
cf/bbl.
deg.
(F.
(1-
6 14
9 44 | 20)2
-e-s) | .8660
.8660
ONS
Special
Pc_1
P _c _1 | 1.10
1.13
1.69
Fic Gravit
078.2
Pc-Pw
26.3
60.2
122.5 | Cal. P. W. 1045.9 1019.8 | 2169
2751
ator Gas_ng Fluid
162.5 | | | Livit | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936
Pt (psia)
1059.2
1029.2
973.2
925.2 | Pt 1121.9 1059.3 947.1 856.0 | F _c Q 8.465 14.666 21.551 27.334 10,200 Feather | 718.2
520.2
PRI
0.200
(F _c Q) ²
71.66
215.0
464.4
747.1 | 1.002 1.000 ESSURE CA cf/bbl. deg. (F. (1-6) 5 9 5 14 | 20)2
-e-s) | .8660
.8660
ONS
Specimon P _C 1 | 1.10
1.13
1.69
Fic Gravit
078.2
Pc-Pw
26.3
60.2
122.5 | Cal. P. W. 1045.9 1019.8 | 2169
2751
ator Gas_ng Fluid
162.5 | | | Livit | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936
Pt (psia)
1059.2
1029.2
973.2
925.2 | Pt 1121.9 1059.3 947.1 856.0 cial: 01en F. | F _c Q 8.465 14.666 21.551 27.334 10.200 Feather R | 718.2
520.2
PRI
One
(F _c Q) ²
71.6
215.0
464.4
747.1 | 1.002 1.010 ESSURE CA cf/bbl. deg. (F. (1- 6 1. 9 4. 5 9. 5 14. | 20)2
-e-s)
4.3
3.0
2.9
9.4 | 98660
8660
ONS
Specify Pc 1 | 1.10
1.13
1.69
Fic Gravit
078.2
Pc-Pw
26.3
60.2
122.5 | Cal. P. W. 1045.9 1019.8 | 2169
2751
ator Gas_ng Fluid
162.5 | | | Li
vit | 3.0691
3.0691
5.5233
.quid Hydro
y of Liqui
9.936
Pt (psia)
1059.2
973.2
925.2
ute Potent
NY
SS
and TITLE
SSED | Pt 1121.9 1059.3 947.1 856.0 cial: Olen F. 236 Pet | F _c Q 8.465 14.666 21.551 27.334 10.200 Feather crolum B | 718.2
520.2
PRI
One
(F _c Q) ²
71.6
215.0
464.4
747.1 | 1.002 1.000 ESSURE CA cf/bbl. deg. (F. (1- 6 1. 9 4. 5 9. 5 14. MCFPD; | 20)2
-e-s) | 98660
8660
ONS
Specify Pc 1 | 1.10
1.13
1.69
Fic Gravit
078.2
Pc-Pw
26.3
60.2
122.5 | Cal. P. W. 1045.9 1019.8 | 2169
2751
ator Gas_ng Fluid
162.5 | | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q $\stackrel{<}{_{\sim}}$ Actual rate of flow at end of flow period at W. H. working pressure ($P_{\rm W}$). MCF/da. @ 15.025 psia and 60° F. - P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - P_{w} Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, osia. - hw Differential meter pressure, inches water. - FgT Gravity correction factor. - F_{t} Flowing temperature correction factor. - Fpv Supercompressability factor. - n I Slope of back pressure curve. Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$