WATE ANALYSIS REPORT

COMPANY Cabot Corp.	ADDRESS_	Lovington,	NM	DATE:/	20/80
SOURCE Howard Fleet #1 Wolfcamp	DATE SAM	PLED 11-19-	80	ANALYSIS — NO.———	
Analysis		Mg/L		*Meq/L	
1. PH5.8					·
2. H ₂ S (Qualitative) <u>Neg</u> .					
3. Specific Gravity 1.175					
4. Dissolved Solids		241,332	-		, ,
5. Suspended Solids	-	None	_		
6. Phenolphthalein Alkalinity (CaCO3)	-	-0-	_		
7. Methyl Orange Alkalinity (CaCO3)	-	180	-•		
8. Bicarbonate (HCO3)	HCO3 -	220	_ ÷61	4.0	HCO,
9. Chlorides (Cl)	CI _	144,504	_ ÷35.5	4070	CI
10. Sulfates (SO4)	SO₄ _	725	48	15.0	SO.
11. Calcium (Ca)	Co _	4000	÷ 20	200	Co
12. Magnesium (Mg)	Mg	486	_÷12.2	40	Mg
13. Total Hardness (CaCO3)	· -	12000			
14. Total Iron (Fe)	-	185			
15. Barium (Qualitative)		150			

16.

• , •

*Milli equivalents per liter

PROBABLE MINERAL COMPOSITION

•		* 	Compound	Equiv. Wt.	x	Meq/L	 Mg∕L
200	Ca (HCO ₃ 40	$Ca (HCO_3)_2$. 81.04		40	 3242
40	Mg	\rightarrow so ₄ 15	Ca SO4	68.07		15	 1021
	+			55.50	·	145	8047
3885	Na		-			-0-	
Sc	sturation Values Di	stilled Water 20°C	Mg (HCO ₃) ₂	73.17	_	-0-	
	Ca CO3	13 Mg/L	Mg SO₄	60 .19	_	40	 1905
	Ca SO ₄ • 2H ₂ O	2,090 Mg/L	Mg Cl ₂	47.62			
	Mg CO ₃	103 Mg/L	Na HCO3	84.00	_	-0-	 <u> </u>
			Na ₂ SO4	71.03		-0-	
				58.46		3885	 227,117
REMARKS							

cc: W. Roberts, B. Gray

cc: w. Roberts, b. Gray	
	Respectfully submitted TRETOLITE COMPANY
	Mike Brewer
-	

12141201-2001 1114 210 100 1000 1 11164 44 1411

WATER ANALYSIS REPORT

COMPANY

SOURCE

Cabot

Corporation

State "C" 1 & 2, Reed #2 Well Howard Fleet Comingled Sample point: 50/50 mixture of the Devonian two (2) waters

Submitted by: Brewer, M. Sampled by: Brewer, M. Distribution Center: Midland Sample date: 10/31/80 Analysis Date: 11/ 7/80 Analysis No.: 5056

SAMPLE ANALYSIS

Appearance: Clear			Color: Colorless
Sp. Conductivity:	110000	micromhos/cm	Chem. Treatment: N/A
pH: 7.5			H2S (Qualitative): Neg.

constituent **	ppm	meg/l	method	comments
Sodium (Na+)	29100	1270	icp	
Potassium (K+)	695.	18.	icp	
Lithium (Li+)	10	1.	icp	
Calcium (Ca++)	2880	144.	icp	
Magnesium (Mg++)	517.	42.6	icp	
Barium (Ba++)	3.	0.04	icp	
Strontium (Sr++)	100	2.	icp	
Aluminum (Al+++)	7.3		icp	
Silver (Ag+)	<0.2	-	icp	
Arsenic (As+++)	<5.	-	icp	
Chromium (Cr+++)	<0.6	-	icp	
Copper (Cu++)	0.86	0.03	icp	
Iron (Fe++)	6.84	0.2	icp	
Mercury (Hg++)	<2.	<u> </u>	icp	
Lead (Pb++)	<3.	-	icp	
Antimony (Sb+++)	<20	-	icp	
Tin (Sn++)	<6.	-	icp	
Titanium (Ti++++)	<0.1	-	icp	
Zinc (Zn++)	3.10	0.0948	icp	
Boron (B) ***	9.60	2.7	icp	
Phosphate (PO4)	<5.	-	icp	
Chloride (Cl-)	51900	1460	titr	
Sulfate (SO4)	1520	31.5	turb	
Bicarbonate (HCO3-)	466.	7.6	titr	
Carbonate (CO3)	<1.		titr	
Silica (SiO2)	55.	-	icp	

\$ } **race**iv(9)

MAR 211 225

, **

(314) 961-3500 / TWX 910 760 1660 / Telex 44 2417

Analysis No. 5056

NOTES TO ANALYSIS

Sum of cations: Sum of anions:	Ion Balance 1480 meg/1 1510 meg/1	Standard deviation: Standard deviation:	26.5 meg/1 29.3 meg/1
	*TDS Balance		•
Measured: Calculated:	91000 ppm 87400 ppm	Standard deviation: Standard deviation:	4550 ppm 1200 ppm

indicates that the amount of this component has changed in a statistically significant way since the last analysis N/A= not available meq/l= milliequivalents per liter ppm and milligrams per liter used interchangeably icp= inductively coupled plasma emission titr= titration; turb= turbidimetric TDS by gravimetric determination Specific Conductivity by Wheatstone Bridge

- Total Dissolved Solids
- ** Valency given is arbitrarily chosen and is not necessarily the true valency unless indicated in the column for comments
- *** TDS boron is given as ppm elemental boron, but for the purposes of an ion balance, boron is converted to BO3---

The various parameters in the above results can be usefully interpreted using the guidelines below:

1) pH value is an indication of the acidity or basicity of a brine. pH measurements provide critical information about a) the solubility of sparingly soluble compounds, b) the carbonate scaling tendency, c) iron oxidation state and d) caution needed in using some external chemical treatments.

2) Specific conductivity: this gives an approximate indication of the total amount of inorganic dissolved solids in the water sample. A simple guideline is that 10,000 micromhos/cm is equivalent to 100 meq/l of dissolved solids. However, this relationship is valid only in solutions with specific conductivities less than approximately 50,000 micromhos/cm.

3) Concentration of various ionic species: the concentrations of various ionic species give information about a) thermodynamic characteristics of the brine, b) scaling tendency of the water, and c) enthalpy of the water.

HISTORY OF FIELD WATER COMPOSITIONAL DATA

Tretolite is using a new data management system to help the operator in managing his waters in the field. This system is based on a comparison of water-analytical data between this newly and any previously analyzed sample.

Our computer record indicates that no analytical data on waters collected from this well or field have been previously added to our computer file. As more data become available and as our automated data evaluation system indicates any water-related problems in your field, the technical personnel of Tretolite will contact you immediately.

SCALE TENDENCIES OF THE ANALYZED BRINE

In the following paragraphs, the scale tendencies of the brine are analyzed by utilizing some basic thermodynamic correlations. These scale tendency considerations are different from the commonly applied Stiff-Davis Diagrams and calculation methods because those methods are not based on the critical thermodynamic conditions encountered in the field.

CaSO4

_ _ _ _ _

The calcium and sulfate ion concentration of the brine as reported in this analysis does not seem to pose any danger of calcium sulfate precipitation at 76 deg-F.

However, if the brine is heated to a temperature of 184.5 deg-F or higher (at water saturation pressure), this brine would have a tendency to precipitate calcium sulfate.

It has to be remembered that CaSO4 scale tendency decreases with increasing pressure. This means, if the system pressure is higher than the water vapor saturation pressure, calcium sulfate scale would form at a temperature higher than reported.

BaSO4

(314) 961-3500 / TWX 910 760 1660 / Telex 44 2417

(

Analysis No. 5056

The barium and sulfate ion concentrations of the brine as reported in this analysis indicate a definite potential for barium sulfate precipitation at 76 deg-F. This indicates that barium sulfate precipitation has already occurred somewhere in this system before the wellbore brine is brought to the ambient conditions.

However, the maximum amount of BaSO4 that can be precipitated is 4.757 Mg/liter of the brine.

SrSO4

The strontium and sulfate ion concentrations of the brine as reported in this analysis indicate that there is a potential for strontium sulfate precipitation at 76 deg-F. This suggests that as the brine is brought to the ambient conditions from higher temperatures and pressures strontium sulfate scaling has occurred.

CaCO3

At 76 deg-F, the stability index is (+): implies scaling tendency.

The precise calcium carbonate scaling tendency of the brine cannot immediately be determined without the required information on temperature, pressure, pH and partial pressure of carbon dioxide above the brine. The Stiff-Davis Stability Index gives only a crude approximation of the CaCO3 scale tendencies. This stability index is given for the sake of completeness.

QUANTITATIVE INFORMATION ON ALL SCALE TENDENCIES

Quantitative information can be extracted on all scaling tendencies of this brine if the temperature and pressure conditions of the brine are available. The most complicated calculations have to be performed on the CaCO3 scale tendencies. The other scale tendencies are easier to determine.

(314) 901-3500 / INX SIU /DU IDDU / HEIER 44 4411

UNTER ANALYSIS PEPORT

עַויגקאַס<u>ט</u>

SOURCE

Cabot Producing Corporation

Submitted by: Brewer, M. Sampled by: Brewer, M.

Distribution Center: Midland

ł

J.L. Reed Well S.W.D. Sample point: Discharge of Pump

Sample date: 10/27/00 Analysis Date: 10/35/80 Analysis No.: 4990

SAMPLE ANALYSTS

Appearance: Clear		Color: Colorless
Sp. Conductivity: pH: 5.7	120000 micromhos/cm	Chem. Treatment: N/A H2S (Oualitative): Pos.

constituent **	ppm	meg/1	method	comments
Sodium (Na+)	30 400	1320	icp	
Potassium (K+)	745.	19.	icp	
Lithium (Li+)	5.	0.9	icp	
Calcium (Ca++)	3010	150.	icp	
Magnesium (Mg++)	508.	41.8	icp	
Barium (Ba++)	<1.	-	icp	
Strontium (Sr++)	100	2.	icp	
Aluminum (Al+++)	<1.		icp	
Silver (Ag+)	<0.2	-	icp	
Arsenic (As+++)	<5.	-	icp	
Chromium (Cr+++)	<0.5	-	icp	
Copper (Cu++)	<0.1	· 🗕	icp	
Iron (Fe++)	2.0	0.07	icp	
Mercury (Hg++)	<2.	- .	icp	
Lead (Pb++)	<3.	-	icp	
Antimony (Sb+++)	<20	-	icp	
Tin (Sn++)	<6.	-	icp	
Titanium (Ti++++)	<0.1	-	icp	
ZINC (Zn++)	0.47	0.0143	icp	
Boron (B) ***	7.8	2.2	icp	
Phosphate (PO4)	<5.	-	icp	
Chloride (Cl-)	54600	1540	titr	
Sulfate (SO4)	1460	30.4	turb	
Bicarbonate (BCO3-)	203.	3.3	titr	
Carbonate (CO3)	<1.	-	titr	
Silica (SiO2)	48.	-	icp	

(314) 961-3500 / TWX 910 760 1660 / Telex 44 2417

Analyria No.

loou

אטאנאנים אטאנאנים

Measured:88000 ppnStandard deviation:4380 ppnCalculated:91100 ppmStandard deviation:1260 ppm

indicates that the amount of this component has changed in a statistically significant way since the last analysis N/A= not available meg/l= milliequivalents per liter

ppm and milligrams per liter used interchangeably icp= inductively coupled plasma emission titr= titration; turb= turbidimetric TDS by gravimetric determination Specific Conductivity by Wheatstone Bridge

Total Dissolved Solids

· · ·

- ** Valency given is arbitrarily chosen and is not necessarily the true valency unless indicated in the column for comments
- *** TDS boron is given as ppm elemental boron, but for the purposes of an ion balance, boron is converted to BO3---

The various parameters in the above results can be usefully interpreted using the guidelines below:

1) pH value is an indication of the acidity or basicity of a brine. pH measurements provide critical information about a) the solubility of sparingly soluble compounds, b) the carbonate scaling tendency, c) iron oxidation state and d) caution needed in using some external chemical treatments.

2) Specific conductivity: this gives an approximate indication of the total amount of inorganic dissolved solids in the water sample. A simple guideline is that 10,000 micromhos/cm is equivalent to 100 meq/l of dissolved solids. However, this relationship is valid only in solutions with specific conductivities less than approximately 50,000 micromhos/cm.

3) Concentration of various ionic species: the concentrations of various ionic species give information about a) thermodynamic characteristics of the brine, b) scaling tendency of the water, and c) enthalpy of the water.

0-425BF 5/80

NCCIA2D MAR 20 1985 いまい ちょうし しゅ 4

Analysis No. . . .

The barium and sulfate ion concentrations of the brine an reported in this analysis indicate a definite potential for barium sulfate precipitation at 76 deg-F. This indicates that barium sulfate precipitation has already occurred somewhere in this system before the wellbore brine is brought to the ambient conditions.

However, the maximum amount of BASOA that can be precipitated in 2.209 Mg/liter of the brine.

SrS04

The strontium and sulfate ion concentrations of the brine as reported in this analysis indicate that there is a potential for strontium sulfate precipitation at 76 deg-F. This suggests that as the brine is brought to the ambient conditions from higher temperatures and pressures strontium sulfate scaling has occurred.

CaC03

At 76 deg-F, the stability index is (-): implies corrosive tendency.

The precise calcium carbonate scaling tendency of the brine cannot immediately be determined without the required information on temperature, pressure, pH and partial pressure of carbon dioxide above the brine. The Stiff-Davis Stability Index gives only a crude approximation of the CaCO3 scale tendencies. This stability index is given for the sake of completeness.

QUANTITATIVE INFORMATION ON ALL SCALE TENDENCIES

Quantitative information can be extracted on all scaling tendencies of this brine if the temperature and pressure conditions of the brine are available. The most complicated calculations have to be performed on the CaCO3 scale tendencies. The other scale tendencies are easier to determine. (314) SE1 3500 / TWX S10 760 1660 / Telex 44 2417

WATER ANALYSIS REPORT

COMPANY

SOURCE

Cabot

۰, ۰

Corporation

State "C" 1, Reed #2
Well Howard Fleet Comingled
Sample point:
Devonian

Submitted by: Brewer, M. Sampled by: Brewer, M. Distribution Center: Midland Sample date: 10/31/80 Analysis Date: 11/ 7/80 Analysis No.: 5057

SAMPLE ANALYSIS

Appearance: Clear	,	Color: Colorless
Sp. Conductivity:	100000 micromhos/c	m Chem. Treatment: N/A
pH: 7.2		H2S (Qualitative): Pos.

constituent **	ppm	meg/l	method	comments
Sodium (Na+)	26400	1150	icp	
Potassium (K+)	635.	16.	icp	
Lithium (Li+)	9.	1.	icp	
Calcium (Ca++)	2770	138.	icp	
Magnesium (Mg++)	473.	38.9	icp	
Barium (Ba++)	3.5	0.05	icp	
Strontium (Sr++)	95.	2.	icp	
Aluminum (Al+++)	5.8		icp	
Silver (Ag+)	<0.2	-	icp	
Arsenic (As+++)	<5.	_	icp	
Chromium (Cr+++)	<0.6	-	icp	
Copper (Cu++)	1.1	0.03	icp	
Iron (Fe++)	2.4	0.08	icp	
Mercury (Hg++)	<2.	-	icp	
Lead (Pb++)	<3.	- ·	icp	
Antimony (Sb+++)	<20	_	icp	
Tin (Sn++)	<6.		icp	
Titanium (Ti++++)	<0.1	-	icp	
Zinc (Zn++)	0.82	0.0251	icp	
Boron (B) ***	7.1	2.0	icp	
Phosphate (PO4)	<5.	-	icp	
Chloride (Cl-)	48 400	1370	titr	
Sulfate (SO4)	1 4 3 0	29.8	turb	
Bicarbonate (HCO3-)	453.	7.4	titr	
Carbonate (CO3)	<1.	_	titr	
Silica (SiO2)	56.	-	icp	

	(314) 961 3500 / TWX 910 /	bli 1660 / Leiex 44	2-11		
Analysis No. 5057			÷ -		
	NOTES TO	ANALYSIS			
Sum of cations: 1 Sum of anions: 1	Ion Balance 350 meg/1 400 meg/1	Standard Standard	deviation: deviation:	24.2 meg/1 27.3 meg/1	
Measured: 84 Calculated: 80	*TDS Balance 000 ppm 800 ppm	Standard Standard	deviation: deviation:	4210 ppm 1120 ppm	
<pre># indicates that the amount of this component has changed in a statistically significant way since the last analysis N/A= not available meg/l= milliequivalents per liter ppm and milligrams per liter used interchangeably icp= inductively coupled plasma emission titr= titration; turb= turbidimetric TDS by gravimetric determination Specific Conductivity by Wheatstone Bridge</pre>					
 * Total Dissolved ** Valency given is true valency unl *** TDS boron is giv of an ion balance 	arbitrarily cho ess indicated in en as ppm element	n the col ntal boro	umn for commen n, but for the	its	

The various parameters in the above results can be usefully interpreted using the guidelines below:

1) pH value is an indication of the acidity or basicity of a brine. pH measurements provide critical information about a) the solubility of sparingly soluble compounds, b) the carbonate scaling tendency, c) iron oxidation state and d) caution needed in using some external chemical treatments.

2) Specific conductivity: this gives an approximate indication of the total amount of inorganic dissolved solids in the water sample. A simple guideline is that 10,000 micromhos/cm is equivalent to 100 meq/l of dissolved solids. However, this relationship is valid only in solutions with specific conductivities less than approximately 50,000 micromhos/cm.

3) Concentration of various ionic species: the concentrations of various ionic species give information about a) thermodynamic characteristics of the brine, b) scaling tendency of the water, and c) enthalpy of the water.

HISTORY OF FIELD WATER COMPOSITIONAL DATA

Tretolite is using a new data management system to help the operator in managing his waters in the field. This system is based on a comparison of water-analytical data between this newly and any previously analyzed sample.

Our computer record indicates that no analytical data on waters collected from this well or field have been previously added to our computer file. As more data become available and as our automated data evaluation system indicates any water-related problems in your field, the technical personnel of Tretolite will contact you immediately.

SCALE TENDENCIES OF THE ANALYZED BRINE

In the following paragraphs, the scale tendencies of the brine are analyzed by utilizing some basic thermodynamic correlations. These scale tendency considerations are different from the commonly applied Stiff-Davis Diagrams and calculation methods because those methods are not based on the critical thermodynamic conditions encountered in the field.

CaSO4

The calcium and sulfate ion concentration of the brine as reported in this analysis does not seem to pose any danger of calcium sulfate precipitation at 76 deg-F.

However, if the brine is heated to a temperature of 184.5 deg-F or higher (at water saturation pressure), this brine would have a tendency to precipitate calcium sulfate.

It has to be remembered that CaSO4 scale tendency decreases with increasing pressure. This means, if the system pressure is higher than the water vapor saturation pressure, calcium sulfate scale would form at a temperature higher than reported.

BaSO4

(314) SDI-SSUU/ HILA SIU / UU JUCU / I CIEK AN ANIA

Analysis No. 5057

The barium and sulfate ion concentrations of the brine as reported in this analysis indicate a definite potential for barium sulfate precipitation at 76 deg-F. This indicates that barium sulfate precipitation has already occurred somewhere in this system before the wellbore brine is brought to the ambient conditions.

However, the maximum amount of BaSO4 that can be precipitated is 5.946 Mg/liter of the brine.

SrSO4

The strontium and sulfate ion concentrations of the brine as reported in this analysis indicate that there is a potential for strontium sulfate precipitation at 76 deg-F. This suggests that as the brine is brought to the ambient conditions from higher temperatures and pressures strontium sulfate scaling has occurred.

CaCO3

At 76 deg-F, the stability index is (+): implies scaling tendency.

The precise calcium carbonate scaling tendency of the brine cannot immediately be determined without the required information on temperature, pressure, pH and partial pressure of carbon dioxide above the brine. The Stiff-Davis Stability Index gives only a crude approximation of the CaCO3 scale tendencies. This stability index is given for the sake of completeness.

QUANTITATIVE INFORMATION ON ALL SCALE TENDENCIES

Quantitative information can be extracted on all scaling tendencies of this brine if the temperature and pressure conditions of the brine are available. The most complicated calculations have to be performed on the CaCO3 scale tendencies. The other scale tendencies are easier to determine. (314) 961 3500 / TWX 910 760 1660 / Telex 44 7417

WATER ANALYSIS REPORT

COMPANY

• •

Cabot

۰.

SOURCE

Corporation

í

State "C" Well 2 Sample point: Wolf Camp Formation

Submitted by: Brewer, M. Sampled by: Brewer, M. Distribution Center: Midland

Sample date: 10/31/80 Analysis Date: 11/ 7/80 Analysis No.: 5058

SAMPLE ANALYSIS

Appearance: Clear		Color: Colorless
Sp. Conductivity: pH: 6.4	110000 micromhos/cm	Chem. Treatment: N/A H2S (Qualitative): Pos.

constituent **	ppm	meq/1	method	comments
Sodium (Na+)	29800	1300	icp	
Potassium (K+)	715.	18.	icp	
Lithium (Li+)	10	2.	icp	
Calcium (Ca++)	3090	154.	icp	
Magnesium (Mg++)	540.	44.4	icp	
Barium (Ba++)	8.1			
Strontium (Sr++)	100	2.	icp	
Aluminum (Al+++)	36.	-	icp	
Silver (Ag+)	<0.2		icp	
Arsenic (As+++)	<5.	-	icp	
Chromium (Cr+++)	<0.6	_	icp	
Copper (Cu++)	1.2	0.04	icp	
Iron (Fe++)	10.2	0.4	icp	
Mercury (Hg++)	<2.	_	icp	
Lead (Pb++)	<3.	_ ·	icp	
Antimony (Sb+++)	<20	_	icp	
Tin (Sn++)	<6.	-	icp	
Titanium (Ti++++)	<0.1	-	icp	
Zinc (Zn++)	1.75	0.0537	icp	
Boron (B) ***	14.2	3.9	icp	
Phosphate (PO4)	<5.	-	icp	
Chloride (Cl-)	53200	1500	titr	
Sulfate (SO4)	1520	31.5	turb	
Bicarbonate (HCO3-)	462.	7.6	titr	
Carbonate (CO3)	<1.	· · · · ·	titr	
Silica (SiO2)	130	-	icp	

. (31 - 961 3500 / TWX 910 760 1660 / Telex 44 2417

Analysis No. 5058

NOTES TO ANALYSIS

Ion BalanceSum of cations:1520 meg/lStandard deviation:27.1 meg/lSum of anions:1540 meg/lStandard deviation:30.0 meg/l*TDS Balance

Measured: Calculated:	93000 89700			deviation: deviation:	4670 1230	
Calculated:	09700	рЪш	Scandard	acvideron.	1200	Pr

indicates that the amount of this component has changed in a statistically significant way since the last analysis N/A= not available meg/l= milliequivalents per liter ppm and milligrams per liter used interchangeably icp= inductively coupled plasma emission titr= titration; turb= turbidimetric

TDS by gravimetric determination Specific Conductivity by Wheatstone Bridge

- Total Dissolved Solids
- ** Valency given is arbitrarily chosen and is not necessarily the true valency unless indicated in the column for comments
- *** TDS boron is given as ppm elemental boron, but for the purposes of an ion balance, boron is converted to BO3---

The various parameters in the above results can be usefully interpreted using the guidelines below:

1) pH value is an indication of the acidity or basicity of a brine. pH measurements provide critical information about a) the solubility of sparingly soluble compounds, b) the carbonate scaling tendency, c) iron oxidation state and d) caution needed in using some external chemical treatments.

2) Specific conductivity: this gives an approximate indication of the total amount of inorganic dissolved solids in the water sample. A simple guideline is that 10,000 micromhos/cm is equivalent to 100 meq/l of dissolved solids. However, this relationship is valid only in solutions with specific conductivities less than approximately 50,000 micromhos/cm.

3) Concentration of various ionic species: the concentrations of various ionic species give information about a) thermodynamic characteristics of the brine, b) scaling tendency of the water, and c) enthalpy of the water.

0-425BF 5/80

.

HISTORY OF FIELD WATER COMPOSITIONAL DATA

Tretolite is using a new data management system to help the operator in managing his waters in the field. This system is based on a comparison of water-analytical data between this newly and any previously analyzed sample.

Our computer record indicates that no analytical data on waters collected from this well or field have been previously added to our computer file. As more data become available and as our automated data evaluation system indicates any water-related problems in your field, the technical personnel of Tretolite will contact you immediately.

SCALE TENDENCIES OF THE ANALYZED BRINE

In the following paragraphs, the scale tendencies of the brine are analyzed by utilizing some basic thermodynamic correlations. These scale tendency considerations are different from the commonly applied Stiff-Davis Diagrams and calculation methods because those methods are not based on the critical thermodynamic conditions encountered in the field.

CaSO4

The calcium and sulfate ion concentration of the brine as reported in this analysis does not seem to pose any danger of calcium sulfate precipitation at 76 deg-F.

However, if the brine is heated to a temperature of 184.5 deg-F or higher (at water saturation pressure), this brine would have a tendency to precipitate calcium sulfate.

It has to be remembered that CaSO4 scale tendency decreases with increasing pressure. This means, if the system pressure is higher than the water vapor saturation pressure, calcium sulfate scale would form at a temperature higher than reported.

BaS**04**

The barium and sulfate ion concentrations of the brine as reported in this analysis indicate a definite potential for barium sulfate precipitation at 76 deg-F. This indicates that barium sulfate precipitation has already occurred somewhere in this system before the wellbore brine is brought to the ambient conditions.

However, the maximum amount of BaSO4 that can be precipitated is 13.762 Mg/liter of the brine.

SrSO4

The strontium and sulfate ion concentrations of the brine as reported in this analysis indicate that there is a potential for strontium sulfate precipitation at 76 deg-F. This suggests that as the brine is brought to the ambient conditions from higher temperatures and pressures strontium sulfate scaling has occurred.

CaCO3

At 76 deg-F, the stability index is (-): implies corrosive tendency.

The precise calcium carbonate scaling tendency of the brine cannot immediately be determined without the required information on temperature, pressure, pH and partial pressure of carbon dioxide above the brine. The Stiff-Davis Stability Index gives only a crude approximation of the CaCO3 scale tendencies. This stability index is given for the sake of completeness.

QUANTITATIVE INFORMATION ON ALL SCALE TENDENCIES

. .

Quantitative information can be extracted on all scaling tendencies of this brine if the temperature and pressure conditions of the brine are available. The most complicated calculations have to be performed on the CaCO3 scale tendencies. The other scale tendencies are easier to determine.

MAR 2011985

.