NEW MEXICO OIL CONSERVATION COMMISSION Santa Fe, New Mexico ## WELL RECORD Mail to District Office, Oil Conservation Commission, to which Form C-101 was sent not later than twenty days after completion of well. Follow instructions in Rules and Regulations of the Commission. Submit in QUINTUPLICATE. If State Land submit 6 Copies | | | | | | | | | in Rules and Regulation
Land submit 6 Copies | |-----------------|----------------------------|----------------|----------------|---|---|--|---|---| | 1.00 | AREA 640 AC
ATE WELL CO | RES
RRECTL | r | | | | | | | ****** | Cal | Compan | rben Co | mperly | | *********************** | Je i.e ilead | | | Well No | 3 | - | | • | 1/4. of Sec | 35 _{T.} | ,, | 378 , NMPI | | | King-De | roniar | | | Pool | Loa | , | Count | | Well is | 1650 | fee | t from | East | line and | 1980 | feet from | iorth li | | of Section | - | | | | | | | | | Drilling Co | | | | | | | | , 19 57 | | | | | | | | _ | | | | | | | | | | | | ••••• | | Elevation a | bove sea level | at Top o | f Tubing H | 2650 | 0.9 | The info | ormation given is to | be kept confidential unt | | | | | | | | | • | | | | | | | OT | L SANDS OR 2 | ZONTER | | | | No. 1 from | 9,3 | 150 | 4- | 9,415 | No. | 4 6 | | | | vo. 1, 11011 | 12,1 | 60 | to | 30يار12 | | 4, Irom | to | | | | | | | | | | | | | 10. 5, Hom | | •••••• | | *************************************** | | o, 110m | | · | | | | | | | CTANT WATE | | | | | | | | | vation to which | | | | | | | | | | | | | • | ••••••••••••••••••••••••••••••••••••••• | | No. 4, from | | ••••• | | to | | *********************** | .feet | *************************************** | | | | | | | CASING RECO |)RD | | | | SIZE | WEIG
PER F | | NEW OR
USED | | KIND OF | CUT AND | | | | 3-3/8" | 1.8 | - | TON | AMOUNT 360 | ВНОЕ | PULLED FROM | PERFORATIONS | PURPOSE | | 3_5/8= | 32// | | light. | 4,503 | - sizer | | | Intermediate | | 20-1215 | 179,20 | | lieu. | 12,300 | aker | • | • | ill String | | E- 8025 | 4.70 | | How | 12,420 | - Aler | - , | • | Production To | | | | | | MUDDING | AND CEMENT | ING RECORD | | | | SIZE OF | SIZE OF | WRE | | NO. SACKS | METROD | | MUD | AMOUNT OF
MUD USED | | HOLE
- 3.7** | CASING 13-3/0* | sæ
E | 50 | OF CEMENT | USED | GI | RAVITY | MUD USED | | -11" | 8-5/8* | 4,5 | 33 | 2,400 | lowoo | | | | | 7-7/8 | 5-1/2* | 12,3 | 20 | 700 | Howes | | • | • | | | | | | | | | | | | | | | : | RECORD OF P | BODUCTION | AND STIMULAT | ION | | | | | (R | cord the l | Process used, No | . of Qts. or Ga | ls. used, interval t | reated or shot.) | | | | | ····· | | | * 1 *** · · · · · · · · · · · · · · · · | | | | | | | | | | | | lone and acid | | | 150 |) Callone | regu. | er eci | i through 2 | " Ele tubi | ng behin d Ho | okall Packer | • | | | | | | | | | | | | Danile of D | roduction Stin | lasia | | Flowed | 280) bbls. | oil in 12 h | ours. | | | Result of P | roduction Sun | iulation | | •••••••••••• | *************************************** | •••••••••••• | *************************************** | | | | •••••• | ••••••• | ••••••••• | ************************* | | ······································ | | | | | | ••••••• | •••••• | | *************************************** | | Depth Cleaned Or | ı t | ## R /RD OF DRILL-STEM AND SPECIAL TES1. If drill-stem or other special tests or deviation surveys were made, submit report on separate sheet and attach hereto ## TOOLS USED | | | | | 0 | | | | | | | | | | | |----------|---|--|---|--|--|--|--|-------------------|----------------------|---------------------|----------------|-----------------|-------------|--------------| | Cabl | le tools | were use | d from | • | feet to | | fe | et, and | from | | ••••• | feet to | | feet. | | | | 4 | | | | P 1 | BODUCTIO | N | | | | | | | | Put | to Proc | ducing | | July 18 | 4 | , 19. | <i>5</i> 7 | | | | | | | | | OIL | WEL | L: The | production | during the first 2 | 24 hou | rs was | 561 | | barr | els of liq | uid of | which | 100 | % was | | | | | - | 0 % | | | | | | | | | | | | | | | | <u>170</u> | | | | 70 | water, | anu | | | was seum | ient. A.F.I. | | | | * | | | | | | | | | | | | | | GAS | WEL | L: The | production | during the first 2 | 24 hou | rs was | | М,С | C.F. plu | .3 | | | • | barrels of | | | | liqu | id Hydroca | rbon. Shut in Pres | sure | | lbs. | | | | | | | | | Len | gth of | Time Sh | ut in | *************************************** | ••••• | | | | | | | | | | | | PLEA | SE IND | ICATE B | ELOW FORMAT | 'ION | TOPS (IN | CONFOR | ANCE | WITH | GEOGE | RAPHI(| CAL SEC | TION OF | STATE): | | | | | 3 175 | Southeastern N | | | 19 7/ | in | | | | | n New Me | | | Т. | Anhy | | 2.280 | | | | 12,14 | | | | -, | | | •••• | | | | | | | T.
T. | | | | | | | | | | | T. | | | 3,120 | | T. | • | | | | | | - | | | | T. | | rs | | ••••• | T. | | | | | | | | | | | T. | | | | | Т. | _ | er | | | | | | | | | T.
T. | Graybu | ndres | J.565 | | T.
T. | | | | | | | | | | | т. | | ta | 5,050 | | T. | | • | | | | | | | | | т. | Drinka | | | | T. | *************************************** | | | •••••• | Т. | Penn | | •••• | | | Т. | T UDDS. | *************************************** | 7 090 | • | Т. | | ••••• | | | | | | | | | т.
т | Ar. | | 1.085 | | T.
T. | | | | | | | | | | | т. | Miss | 1 | 1,415 | | Т. | | | | | | | | | | | | | | | | | FORM | ATTON D | ECOR | D | | | | | | | | | | | • | | 1 01111 | ATION K | | | | | | | | | F | rom | То | Thickness
in Feet | Fo | rmatio | · · · · · · · · · · · · · · · · · · · | | om | То | Thicknes | s | F | ormation | | | F | 0 | 350 | in Feet | Fo
Surface as | | on . | F | | | Thicknes
in Feet | s | F | ormation | | | | 360 | 360
2175 | in Feet
360
1815 | Surface as | oul C | on
Grave] | F | | | | S | F | ormation | | | | 360
2175
2280 | 350
2175
2280
3120 | 360
1815
105
840 | Surface sa | od 6
Sh. | on
Cravel | F | | | | S | F | ormation | | | | 0
360
2175
2280
3120 | 350
2175
2280
3120
1555 | 360
1015
105
840 | Surface da
Red beds, i
Anhydrite
Salt & Anhy
Sand, Sh. | nd 6
Sh. dri | on
Gravel
& Line
to
& Anhy | F | | | | s | F | ormation | | | | 360
2175
2280 | 350
2175
2280
3120 | 105
140
1405
1405
1405
1405 | Surface de
Red beds, I
Anhydrite
Salt & Anhy | nd &
Sh. Sh. S
ydri
Li. e
Anh | on
Gravel
& Line
te
& Anhy | e Francisco | | | | S | F | ormation | | | | 0
360
2175
2280
3120
3565
3575 | 360
2175
2280
3120
1555
6050
7975
9000 | 105
105
105
105
115
1165
125
125 | Surface Jan
Red beds, I
Anhydrite
Salt & Anhy
Sand, Sh. Jolomite &
Sand, Shul
Anhydrite, | od 6
Sh. /
ydri
id o
Anh | on
Gravel
& Line
te
& Anhy
ydrite
Do omit
le & Do | e lemi e | | | | S | F | ormation | | | | 0
360
2175
2280
3120
3565
3575
3575 | 360
2175
2230
3120
1555
6050
7975
9000
11085 | 1015
1015
1015
1015
1115
1115
1115
1025
102 | Surface on
Red beds, I
Anhydrite
Salt & Anhy
Sand, Sh. I
Jolomite &
Sand, Sh. I
Anhydrite,
Dolomite, | od & Sh. /dri | te & Anhy ydrite le & Do | e lemi e | | | | S | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
L085
L15 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057 | 105
105
105
105
105
105
105
105
105
105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sh. I
Jolomite &
Sand, Shall
Anhydrite,
Dolomite, i
Sand, Shall
Like and C | od & Sh. /dri | te & Anhy ydrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057 | 105
105
105
105
105
105
105
105
105
105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sh. I
Jolomite &
Sand, Shall
Anhydrite,
Dolomite, i
Sand, Shall
Like and C | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | S | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | S | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | S | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sh. / dri id e Anh | te & Anhy pdrite Do conit le & Do | e lemi e | | | | 5 | F | ormation | | | | 0
360
2179
2260
3120
565
5050
7975
X000
1085
1115
2057 | 360
2175
2280
3120
4565
6050
7975
9000
11085
11415
12057
12150 | 105 105 105 105 105 105 105 105 105 105 | Surface on
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sholl
Anhydrite,
Dolemite,
Sand, Shall
Lie and C
Shale and | od & Sha dri | te & Anhy ydrite Do omit le & Do | drite
demite
de Chert | om | То | in Feet | | | ormation | | | | 0
360
2175
2260
3120
365
3075
3085
3057
2160 | 360
2175
2280
3120
1555
6050
7975
9000
11085
11115
12057
12150
12130 | in Feet 360 1015 105 040 1145 1465 1025 2065 330 642 103 270 | Surface is Red beds, Anhydrite Salt & Anhy Shall Anhydrite, Dolemite, Sand O Shall and O Shale and O Shale and Dolomite an | Anha Sha Sha Sha Sha Sha Sha Sha Sha Sha S | te Line te & Anhy ydrite Do omit le & Do | drite | om | To | CE IS N | EEDE | D | | on it so far | | | 0
360
2175
2260
3120
565
5050
1085
1150
2057
2160 | 360
2175
2230
3120
1555
6050
7975
9000
11085
11115
12057
12150
12130 | in Feet 360 1015 105 010 1115 1105 1205 2065 330 612 103 270 | Surface is
Red beds, in
Anhydrite
Salt & Anhy
Sand, Sh. in
Bolomite &
Sand, Shali
Anhydrite,
Dolomite, in
Shale and C
Shale and Dolomite and | Anha Sha Sha Sha Sha Sha Sha Sha Sha Sha S | te Line te & Anhy ydrite Do omit le & Do | ET IF ADD | ITIONA | To AL SPA | CE IS N | EEDE of the w | D
ell anc al | l work done | | | | 0
360
2175
2260
3120
565
5050
1085
1150
2057
2160 | 360
2175
2230
3120
1555
6050
7975
9000
11085
11115
12057
12150
12130 | in Feet 360 1015 105 010 1105 1105 1205 2065 330 612 103 270 | Surface and half and Shale and Dolord to an ATTACH SE that the informatial ble records. | PARA | te Anhy verite le a Do ine TE SHEE | ET IF ADD | ITION Applete and | To AL SPA d correct | CE IS N | EEDE of the w | D
ell and al | l work done | on it so far | | as (| 1 here can be | 350
2175
2230
3120
1555
6050
7975
9000
11085
11115
12057
12150
12130 | in Feet 360 1015 105 010 1105 1105 1205 1025 2065 330 612 103 270 | Surface is Red beds, Anhydrite Salt & Anhy Sh. Bolomite & Sond, Sh. Bolomite, Sand, Shale and Dolomite Do | PARA tion gi | te Anhy verite le & Do omit le & Do TE SHER | dritted and the second secon | ITION Applete and | To AL SPA d correct | CE IS Nt record of | JEEDE of the w | D
ell anc al | l work done | |