AREA 640 ACRES LOCATE WELL CORRECTLY | | Pl | Company or Or | troleum | Comp | any | ····· | *************************************** | | Bar | tlesvil
Address | le, | Oklaho | ma . | |---------------------------------------|-------------------|---------------------|---|---------------|--------------------|---|---|---------|----------------|---|---|---|---| | Lea | | Company or Up | Well No. | 1 | | in 8 1 | 11/4 | o | f Sec | | ······, | T | 1.7 | | . 39 | Lease | , N. M. P. M., | Sex | 1-w11 | doat | | Fiel | ď | | Lea | | | County. | | | 660 | feet North | | | | | | | | line of | SV/4 | . Sec | . 19, | | | | il and gas lea | | | | | | | | | | | • | | | | ne own er is | | | | | | | | | | | · | | - | | d the permitte | | | | | | | | | | | | | | | Phillip | | | | | | | | | | 11e, (| kla homa | | | | d April | | | | | | | | | | | 19 48 | | Name o | f drilling co | ntractorU | scan Dr | 1111 1 | g Co. | | , A | ddress | Okl | a homa | ity. | Oklal | holle | | | | level at top | | | | | | | | | | | | | The inf | ormation gi | ven is to be k | ept confid | lential | until | No. | t conf | ident | ial | *************************************** | i | 19 | • | | | | | | 0 | IL SANI | DS OR | ZONES | | | | | | | | No. 1, f | rom 401 | 8 | to | 316 | | No. | 4, from | | | | to | | | | • | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | NO. 3, I | rom | | | | | | | | ************** | | | | | | Incl 1 | data an | te of water in | flow and | | ORTANT
n to whi | | | | · <u>·</u> | | | | | | | | ne logged | | | | | | | | | | • | | | • | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | No. 3, f | rom | | *************************************** | to | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | fe | et | ······································ | | | | | No. 4, f | rom | | | to | | , | ••••• | fe | e t. | ····· | ······································ | | | | | | | | | CASIN | G REC | ORD | | | | | | | | SIZE | WEIGHT | THREAD | S MAKE | АМ | OUNT | KIND | | JT & FI | LLED | | RFORA | | PURPOSE | | | PER FOOT | PER INCE | 1 | _ | - | SHO | | FROM | 4 | FROI | 4 | TO | | | 5/8 | OD 32# | 8-Y | LW | | orall | Hawe
) | | | | | _ | | Surface | | la OD | 14# | 8 rd | H-40 | 406 | 21 | leks | | | | | _ _ | | Oil str | | <u>-</u> | | | | (01 | rerall | <u>}</u> | | | | | _ | : | - | | | | _ | | _ | | | | | <u>4</u> : | | | | | | | | | | | , | | | | - | · · · · · · · · · · · · · · · · · · · | | - | | | | | | Mt | DDING | AND (| CEMEN | TING B | ECOR | D | | | | | | SIZE O
HOLE | SIZE OF
CASING | WHERE SET | NO. S.
OF CE | ACKS
MENT | MET | HOD US | SED | MU | D GRAV | VITY | АМО | INT OF M | MUD USED | | | 8 5/8" | 1163'10" | 40 |) | Hall | iburt | OR | | | | | | | | | | 400 4000 | | | | A | | | | | | <u> </u> | | | | 5 | 401612# | 30 | <u> </u> | Hel I | iburt | OR | | | | | | | | | | | | PL | ugs an | ND AD | APTERS | š | | | | | | | Heaving | nlug—Ma | terial | None | | Leng | ≄t h | | | | Denth Se | t. | | | | | | | | | | | | | | | | | *************************************** | | Adapter | s—-Material | | | | | | | | | | | | | | | | | CORD O | | OTING | OR CI | HEMICA | L TRE | | ENT
TH SHOT | | | | | SIZI | SHELI | USED CH | XPLOSIVE
EMICAL U | SED | QUANT | rity | DA' | ľĘ, | | TREATED | DE | PTH CLE | ANED OUT | | · · · · · · · · · · · · · · · · · · · | | J | 11 XX* | | 1 21 0 g | | 6-9-4 | 2 | | -4275 | _ | 4314 | | | | | S.N | .G. ** | | 400 0 | 1 ts | 4-25- | 48- | 4247 | -4300 | _ | 4310 | } | | | | | | | | | | | | | | | | | Results | of shooting | or chemical | treat ment | no. | result | is | Made | 50 t | ble. | oil ir | 5b | P\$ | | | | | | *************************************** | | | · **** | | | ······ | | *************************************** | *************************************** | *************************************** | | | | | | | | •••• | RECORI | OF D | RILL-ST | rem al | ND SPE | CIAL ' | rests | , | | | | Rock pressure, lbs. per sq. in. emulsion; % water; and % sediment. Gravity, Be 58.0 feet to 4516 feet, and from feet to feet feet to feet, and from feet to feet **EMPLOYEES** Put to producing , 19 48 Rotary tools were used from..... Cable tools were used from..... **PRODUCTION** The production of the first hours was barrels of fluid of which 100 % was oil; % , Driller Eugene Blownt, Driller..... Rey May, Driller, Driller... J. C. Hill ## FORMATION RECORD ON OTHER SIDE I hereby swear or affirm that the information given herewith is a complete and correct record of the well and all work done on it so far as can be determined from available records. Subscribed and sworn to before me this....... Name.... day of My Commission expires..... Notary Public. Position Bi strict Superintendent Representing Phillips Patroleum Company Company of Operator Address Rox 6666, Odessa, Toxas ## FORMATION RECORD | FROM | TO | THICKNESS
IN FEET | | FORMATION | |---------------|--|--|--|---| | 0 | 100 | 100 | Sand and Calien | 3, | | 100 | 553 | 458 | Red bed | | | 558 | 612 | 59
158 | Red bed & shippy | shele | | 61.8
750 | 750
696 | 158
148 | Red bed & stiely | The state of s | | 898 | 976 | 76
5 5 | Red bed & shells
Red bed & red ro | | | 976
1031 | 1051
1068 | 30
37 | Red bed, shale & | sand | | 1068 | 1181 | 55 | Red bed & shells | the state of s | | 1121
1221 | 1881
St. 200 1870 | en wor .100 seeking | Anhydrite
Anhydrite & sed | 66 | | 1270 | 1967 | 697 | Salt, embydrite | & Sin 11s | | 1967
2158 | 2136
2371 | 171
235 | Salt & enhydrite | | | 2371 | 2787 | 386 | Anhydrite | State of the Control of the Control | | 2757
2615 | 2964 | 58
149 | inhydrite & Shel | | | 2964 | 5033 | 69 | Ambydrite & shal | n i vitti (mitti i miti | | 3035 | 3082
81.86 | 49 | Anhydrite & Cyp | | | 3082
3126 | 31.85 | 86 | Anhydrite, shale | à Potent | | 31.85
3251 | 3251
3265 | . Vec 6 6 e − | Anhydrite & Cyp | To the Last sawah capy Sees Holley Control of the con | | 3265 | 3299 | 34. | Ambydrite | and the second of o | | 3299 | 3325 | 27 1 26 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Lime & Gyp | ing na manggalang kanalang ka
Bananggalang | | 3325
3331 | 3651
3417 | 120 155 2 | Anhydrite
Anhydrite & Sand | ter externi om en | | 3417 | 3452 | 85 | Lime | | | 3452
3470 | 3475 | 18 | Anhydrite
Send | en e | | 3475 | 3496 | | Limo, | in Section (1997) in the section of | | 3496
3535 | 3535
356 5 | 39
50 | inhydrite & Shel | en e | | 3585 | 3595 | 10 | Broken Lime & St | | | 3595 | 3663 | 68
17 | Lim A chart | | | 3663
3680 | 3680
3713 | 17
38 | Lime & chele | in the first of the second | | 3713 | 3761 | 48 | a dendy Lime | $x = \Theta^{\bullet}(x) \cdot (1 + (x - y) \cdot x) + (1 + (x - y) \cdot x) \cdot x + (1 + (x - y) \cdot x)$ | | 3761
3780 | 5780
4083 | 19
253 | Lime & Gyp | | | 4055 | 4062 | 29 00 mi | Lime & Hd sand | z in the section will be seen to be a section of the th | | 4068
4110 | 4110
4117 | 48 | Lime
White sand | National Control of the | | 4117 | 4168 | 51 | T.1 ma | en de la companya | | 4168
4188 | 4186
4208 | 20 | Lime & Send | | | 4202 | 4805 | 3 | Lime & streaks | of send | | 4205 | 4811 | 6
15 | Lime
Sandy Lime | | | 4211
4286 | 4226
4246 | 15
20 | Lime & send | and the state of t | | 4854
4861 | 4281
4299 | 27
18 | Broken lime
Lime & Ambydri | And the state of t | | | | - | Broken lime
Lime & Ambyeri
Lime
Total Depth: | And the state of t | | 4961 | 4299
4316 | 18 | Broken lime
Lime & Anhydri
Lime
Total Depth: | Property of the second | | 4961 | 4299
4316 | | Broken lime
Lime & Anhydri
Lime
Total Depth: | | | 4961 | 4299
4316 | 18 | Broken lime
Lime & Ambyeri
Lime
Total Depth: | | | 4961 | 4299
4316 | | Broken lime Lime & anhydri Lime Total Depth: | | | 4961 | 4299
4316 | | Broken lime Lime & anhydri Lime Total Depth: | | | 4961 | 4299
4316 | | Broken lime Lime & anhydri Lime Total Depth: | | | 4961 | 4299
4316 | 37
 | Broken lime Lime & anhydri Lime Total Depth: | | | 4961 | 4816 | 3703U- | Broken lime Lime & anhydric Lime Total Dopth: Outlier to the control of cont | | | 4961 | 4816 | 37
 | Broken lime Lime & anhydric Lime Total Dopth: Outlier to the control of cont | | | 4961 | 4816
4816 | | Broken lime Lime & anhydric Lime Total Dopth: Destriction of the control | Note that the second of se | | 4881 | 4816
4816 | | Reckin lime Lime & anhydric Lime Total Depth: Outside Carte and Anhydric Car | Note that the second of se | | 4881 | 4816
4816 | | Reckin lime Lime & anhydric Lime Total Depth: Outside Carte and Anhydric Car | Note that the second of se | | 4861 | 4816
4816
4816 | | Reckin lime Lime & Anhydri Lime Total Dopth: Distriction of the control c | Note that the second of se | | 4861 | 4816
4816
4816 | | Reckin lime Lime & Anhydri Lime Total Dopth: Distriction of the control c | And the second of o | | 4861 | ### ################################## | | Reckin lime Lime & Anhydri Lime Total Dopth: Outside History His | Services of the th | | 4881 | 4816
4816
4816 | | Recking lime Lime & Anhydri Lime Total Dopth: Construction of the construction constru | Note that the second of se | | 4881 | ### ################################## | | Recking lime Lime & Anhydri Lime Total Dopth: Construction of the construction constru | Services of the th | | 4881 | 4816
4816
4816 | | Recking lime Lime & Anhydri Lime Total Dopth: Construction of the construction constru | Fig. 1. Sec. 1 | | 4881 | 4816
4816
4816 | | Recking lime Lime & Anhydri Lime Total Dopth: State of the t | The second secon | | 4881 | 4816
4816
4816 | | Recking lime Lime & Anhydri Lime Total Dopth: State of the t | And the Mark of the Mark of the Control Cont | | 4881 | 4816
4816
4816 | | Recking lime Lime & Anhydri Lime Total Dopth: State of the t | And the second of o | | 4881 | 4816
4816
4816 | | Desired to the second of s | And the second s | | 4881 | 4816
4816
4816
792 di | | Analysis and analy | Services (Services) (S | | 4881 | ### 1986 #################################### | | Analysis and analy | And the second of o | | 4881 | 4816
4816
4816
792 di | | Analysis and analy | And the state of t | | 4881 | 4816
4816
4816
792 dt | | Antico de Antico de Linea de Carlos | ** ** ** ** ** ** ** ** ** ** ** ** ** | | 4881 | 4816
4816
4816
792 di | | Anteres of the second s | | | 4881 | 4816 4816 4816 792 dt | | Antima de Antima Lime Lime de Antima de Cara d | And the second s | | 4881 | 4816 4816 4816 792 dt | | Antima de Antima Lime Lime de Antima de Cara d | AND | | 4881 | 4816 4816 4816 792 dt | | Andrew Analysis I in the Total Doyst. | And the second s | | 4881 | 4816 4816 792 di 100 100 100 100 100 100 100 100 100 10 | | Recipie lim Lime A Anhydri Lime Total Dopth | And the second s | | 4881 | 4816 4816 4816 792 di 792 di 793 di 793 di 793 di 794 di 795 d | | Recipie Line Line Total Dopth | AND | | 4881 | 4816 4816 4816 792 di 792 di 793 di 793 di 793 di 794 di 795 d | | Recipie Line Line Total Dopth | AND SECURE AND ADDRESS OF THE ADD | gales gewege kan all all kantagara in palestoge kan a ¥