NEW MEXICO OIL CONSERVATION COMMISSION HOS Santa Fc Mere Merico WELL RECORD Mail to District Office, Oil Conservation Commission, to which Form C-101 was sent not later than twenty days after completion of well. Follow instructions in Rules and Regulations of the Commission. Submit in QUINTUPLICATE. If State Land submit 6 Copies | lling Comm | linderia
1980
15 | ented | 1/4 of 100 | 15 | | (Lease) | | |---|---|---------------|---|------------------------|------------------------|-----------------------------|--| | isll islling Commonne of Drilling | 1980
15 | ented | - | 1/ 6 2-6 4-4 | т | 168 R | 352 NM | | ectionling Comm | 1980
15 | feet from | | | | | | | ectionling Comm | 15
enced | | | | | feet from | | | ling Comm | enced | | | | | | | | ress | | If S | State Land the Oil a | nd Gas Lease No. | i | | *************************************** | | lress | _ | 10/ | /35/ | 19. 56 Drilling | was Completed | 2/27/ | 19 | | | ng Contrac | torA. | V. Thompson, | Im. | | | | | | | Oli | ees, Israe | | | | *************************************** | | etion show | e sea level a | t Top of Tubi | ng Head | 89 ¹ | The in | formation given is to | be kept confidential | | | | | | | | - | - | | | | | | | | | | | | | _ | _ | L SANDS OR ZO | | | | | • | • | | | | | to | | | - | | | | | | to | | | 3, from | | | | No. 6, | from | to | ••••••• | | | | | ***** | RTANT WATER | GAWME | | , | | | | in Ø | i elevation to which | | | | • | | | | | | | | foot | | | - | | | | | | | | | - | | | to | | | | | | 3 from | | | | | | feet | | | | | | to | | | | | | | | | toto | | | | · | | | | | | | | | | | 4, from | | it New | | | | | PURPOSE | | 4, from | WEIGH | it New | OR AMOUNT | CASING RECOI | RD CUT AND | fcet | | | 4, from | WEIGH | it New | or | CASING RECOI | RD CUT AND | PERFORATIONS | PURPOSE Surface Intermediate | | 4, from | WEIGH | it New | OR AMOUNT | CASING RECOI | RD CUT AND | fcet | PURPOSE Surface Intermediate Production | | 4, from | WEIGE
PER FO | it New | OR AMOUNT | CASING RECOI | RD CUT AND | PERFORATIONS | PURPOSE Surface Intermediate | | 4, from | WEIGE
PER FO | it New | OR AMOUNT 119 1,730 12,691 12,591 | CASING RECOI | CUT AND
PULLED FROM | PERFORATIONS | PURPOSE Surface Intermediate Production | | 4, from
SIZE 3/8" 5/8" 7" 1-3/8" | WEIGH
PER FO
18
3644
26-29- | NEW USI | D AMOUNT 10. 10. 10. 10. 10. 10. 10. 10 | CASING RECOI | CUT AND
PULLED FROM | PERFORATIONS | PURPOSE Surface Intermediate Production Tabing AMOUNT OF | | 4, from | WEIGE
PER FO | it New | OR AMOUNT 119 1,730 12,691 12,591 | CASING RECOI | CUT AND PULLED FROM | PERFORATIONS | PURPOSE Surface Intermediate Production Tabing | | 4, from | WEIGH
PER FO
3641
26-29- | T NEW USI | MUDDING No. SACES OF CEMENT | CASING RECOI | CUT AND PULLED FROM | PERFORATIONS 12512 - 12620 | PURPOSE Surface Intermediate Production Tabing AMOUNT OF | | size | WEIGH
PER FO
3641
26-29- | NEW USI | MUDDING NO. SACES OF CEMENT | CASING RECOI | CUT AND PULLED FROM | PERFORATIONS 12512 - 12620 | PURPOSE Surface Intermediate Production Tabing AMOUNT OF | ## ORD OF DRILL-STEM AND SPECIAL TES If drill-stem or other special tests or deviation surveys were made, submit report on separate sheet and attach hereto ## TOOLS USED | | ol s wer e us | ed from | ······ | feet t | io | feet, a | and from | | feet 1 | to | | |--|--|---|--|--|--|---|-----------------|--------------|---|---|--| | | | | | | PR | ODUCTION | | | | | A SECTION AND A SECTION ASSESSMENT ASSESSMEN | | _ | | | February | 2h. | | • | | | | | | | it to Pr | oducing | • | | | 19.5 | _ | | | | | | | IL WE | LL: The | e productio | on during the fi | rst 24 ho | urs was | 450 | ba | rrels of liq | uid of which | 100 | % | | | was | oil; | D | .% was e | mulsion: | | | | | | , | | | | | 40 4 | | | | 70 Wate | , and | • | /0 was seur | ment. A | | | Gra | wity | | | •;•••••••• | | | | | | | | AS WE | LL: The | e productio | on during the fi | rst 24 ho | urs was | •••••• | M.C.F. p | lus | ••••••••••••••••••••••••••••••••••••••• | ••••••••••••••••• | barre | | | liqu | iid Hydroc | arbon. Shut in | Pressure | ****** | lbs. | | | | | - | | enath c | of Time St | aut in | | | | | | | | | | | _ | | | | | | | | | | | • | | PLE | ASE IND | DICATE B | ELOW FORM | | | CONFORMAN | CE WIT | H GEOGI | | | i | | | 1 | 645 | Southeaster | | | 19 266 | | | | stern New Me | 7 | | • | 1 | 979 | | | | 12,365 | | | - | ••••• | 1 | | - | | | ••••• | | | * | | - | | itland | 1 | | Sait
Yates | , 5 | 0 39 | | T.
T. | • | *************************************** | | · | _ | ······································ | 1 | | | | | •••••• | | _ | ····· | | | | Ťs | 1 | | | , n | | •••••••••••• | | | | | | | u t | | | | | | | | _ | | | | | | | | San | Andres | 627 | | | | ************************ | | | | *************************************** | | | Glori | eta. 6 | 160 | | | | | | | | (| | | | kard | •••• | ••••• | т. | | | | т. | | ************************* | 1 | | Tubb |)S | 311
027 | | Т. | *************************************** | | | Т. | • | | | | | | | | | | ****************** | | | | | | | | 30 | <u></u> | | Т. | *************************************** | ****** | | т. | •••••• | | | | . Penn | 10, | 5 7 0 | | т. | * | | | T. | *************************************** | ****************************** | | | | 10, | 240
470 | • | T. | | | | T. | *************************************** | | | | . Penn | 10, | 240
470 | | т. | | | | T. | *************************************** | ****************************** | | | . Penn | 10, | Thickness | | т. | FORMA | | | Thicknes | | ****************************** | | | . Penn
. Miss.
From | 10,
11, | Thickness in Feet | | T. T. Formatic | FORMA? | FION REC | ORD | T. | | | | | Penn
Miss. | 10,
11,
10
To | Thickness in Feet | | T. T. Formatic | FORMA? | FION REC | ORD | Thicknes | | | | | Penn
Miss. | To 110 1055 1645 | Thickness in Feet | Caliche a
Ref beds
Red beds | Formatic | FORMATion d beds | FION REC | ORD | Thicknes | | | | | Penn
Miss. | To
11,1
110
1055
1645
1979 | Thickness in Feet 110 945 1645 | Caliche a
Red beds
Red beds
Anhydrite | Formatic | FORMATION ON THE PROPERTY OF T | FION REC | ORD | Thicknes | | | | | Penn
Miss. | To
11,1
110
1055
1615
1979
2966 | Thickness in Feet 110 945 1645 334 987 | Caliche a
Red beds
Red beds
Ashydrite | Formatic | FORMATION ON THE PROPERTY OF T | FION REC | ORD | Thicknes | | | | | Penn Miss. From 0 10 55 15 17 66 175 | To
11,1
10,1
10,55
16,5
1979
2966
1675
1688 | Thickness in Feet 110 945 1645 | Caliche a
Red beds
Red beds
Anhydrite | Formatic | FORMATion d beds mhydrite | FION REC | ORD | Thicknes | | | | | Penn Miss. From 0 10 55 15 17 16 15 15 15 15 15 15 15 15 15 15 15 15 15 | To
11,1
10,55
16,55
16,55
1979
2966
1675
1688
19916 | Thickness in Feet 110 945 1645 334 987 1709 13 6222 | Caliche a
Red bods
Red bods
Ashydrite
Ashydrite
Lime and
Lime | Formatic | FORMATION ON BOTH THE PROPERTY OF | FION REC | ORD | Thicknes | | | | | Penn Miss. From 0 10 55 15 77 66 175 88 110 | To
110,
1055
1615
1979
2966
1675
1688
16916 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 | Caliche a
Red beds
Red beds
Anhydrite
Anhydrite
Lime and
Lime
Lime and | Formatic | FORMATION ON BOTH THE PROPERTY OF | FION REC | ORD | Thicknes | | | | | From 0 10 55 66 77 66 175 | To
11,
110
1055
1615
1979
2966
1675
1688
16910
16930 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 | Caliche a
Red beds
Red beds
Anhydrite
Anhydrite
Lime and
Lime
Lime and
Lime | Formatic and | FORMATON DESCRIPTION ON THE PROPERTY OF PR | FION REC | ORD | Thicknes | | | | | Penn
Miss.
From
0
10
55
15
77
66
75
88
10 | To
110,
1055
1615
1979
2966
1675
1688
16916 | Thickness in Feet 110 945 1645 334 987 1709 13 6222 20 27 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime | Formatic and | FORMATON DESCRIPTION ON THE PROPERTY OF PR | FION REC | ORD | Thicknes | | | | | Penn Miss. From 0 10 55 15 77 15 10 11 15 77 15 15 15 15 15 15 15 15 15 15 15 15 15 | To
11,
110
1055
1645
1979
2966
4675
4688
4916
4939
4957
4957
4959
1148
1542 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 | Caliche a Red beds Red beds Ashydrite Ashydrite Lime and Lime Lime and Lime Lime and Lime Lime and | Formatic and an anny distribution anny distribution and an anny distri | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | Penn
Miss.
From
0
10
55
15
77
66
77
88
19
19
19
19 | To 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 | Caliebe a Red beds Red beds Ashydrite Ashydrite Lime and Lime Lime and Lime Lime and Lime Lime and Lime | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | Penn
Miss.
From
0
10
55
15
77
66
77
88
19
19 | To
110,1055
1615
1979
2966
1675
1688
1990
1997
1990
1118
1512
2119
2525 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | Penn
Miss.
From
0
10
55
45
77
66
77
88
19
19 | To 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 | Caliebe a Red beds Red beds Ashydrite Ashydrite Lime and Lime Lime and Lime Lime and Lime Lime and Lime | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | Penn
Miss.
From
0
10
55
15
79
66
75
88
10
13
19
19 | To
11,1
110
1055
1645
1979
2966
1675
1688
16916
16930
16957
16990
11148
1512
2519
2525
2691 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | Penn
Miss.
From
0
10
55
15
79
66
75
88
10
13
19
19 | To
11,1
110
1055
1645
1979
2966
1675
1688
16916
16930
16957
16990
11148
1512
2519
2525
2691 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | Penn Miss. From 0 10 55 15 77 66 775 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | To
11,1
110
1055
1645
1979
2966
1675
1688
16916
16930
16957
16990
11148
1512
2519
2525
2691 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | From O 10 55 66 77 68 19 19 19 | To
11,1
110
1055
1645
1979
2966
1675
1688
16916
16930
16957
16990
11148
1512
2519
2525
2691 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | From O 10 55 17 66 175 88 19 19 19 | To
11,1
110
1055
1645
1979
2966
1675
1688
16916
16930
16957
16990
11148
1512
2519
2525
2691 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | From O 10 55 17 66 175 88 19 19 19 | To
11,1
110
1055
1645
1979
2966
1675
1688
16916
16930
16957
16990
11148
1512
2519
2525
2691 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | | From 0 10 55 15 77 166 175 188 190 191 191 191 191 191 191 191 191 191 | To
11,1
110
1055
1645
1979
2966
1675
1688
16916
16930
16957
16990
11148
1512
2519
2525
2691 | Thickness in Feet 110 945 1645 334 967 1709 13 6222 20 27 138 158 394 577 406 | Caliche a Red beds Red beds Anhydrite Anhydrite Lime and Lime Lime and Lime Lime Lime Adme Lime Lime Lime Lime Lime Lime Lime Li | Formatic and an anny distribution and an anny distribution anny distribution and anny distribution anny distribution and anny distribution anny distribution and and distribution anny and distribution and distribution anny distribution and distribu | FORMATON DESCRIPTION OF THE PROPERTY PR | FION REC | ORD | Thicknes | | | | Company or Operator Simelair Oil & Gas Company . Address 520 E. Broadway, Hobbs, New Mex Matrice Superintendent as can be determined from available records. Name. C. C. Selter Orig & hee: OCC