		NE	W MEXICO			ON COMMISS	ION		
					•	•			Form C-
			-	ا أَنْ فَانْ اللهِ الله	- EH 9	·			Revised 12-1
ol South				nRCA	36				
itialX									
mpany The I	are Oil Co	mpany		Lease	South Va	cuum Unit	We	ell No	2-35
it <u>I</u>	Sec35	Twp _ 18	-8 R	ge. <u>35-</u> 1	<u>Pur</u>	chaser_P	hillips I	Petroleu	m Company
CARGE_ 5*	Wt. 17.93	_I.D4	.276 Se	et at 138	381 P	erf <u>13</u>	620	_To	13823
oing 2	Wt. 4.70	_I.D <u>1</u>	.995 Se	et at 130	522 P	erf. Open	Ended	_To	
Pay: From	13020 To	13823	L_ <u>13</u> '	721 x	G_0.801	GL 1	1000	Bar.Pre	ss. 30.18 1
ducing Thru	: Casing		Tu	ıbi.ng	X	Type We	377 ell G. (D. Dual	
e of Comple					Sii	ngle-Brade	enhead_G.	$G \cap \Delta r \cap G$	I O Dual
					ED DATA		•		· · · · · · · · · · · · · · · · · · ·
ted Through	(December)	(Chales)	(Motom)		ED DATA		m . m .	****	_
	Flow		(Medel)					ps F	lange
(Prover)	(Choke)	Press	. Diff.	Temp.	Press.	Data Temp.	Casing I	Data Temp.	Duratio
(Line) Size	(Orifice))	1	ł I			į.	Ì	of Flo
1 002			1 - "		3498	78	Packer		64
4.026	2.000	26		1978 1978	368 211	76 76			9
4.026	2.000	26	11	15	110	75			3
4.026	2.000	26	世	4	<u>82</u> 53	75			3 2h
				FLOW CAL		IS			
Coeffici	ent	P	ressure	Flow Tact	*	Gravity	Compress. Factor		Rate of Flow
(24-Hou	r) \sqrt{h}	wpf	psia	F	1	Factor F _g	Fpv		Q -M CFPD @ 15. 0 25 psi:
25.580	20,		10c	1.0157		0,9325	- PV		502.0
25,580	20.		26-39,2	1.0157		0.9325			502.0
25,580 25,580	20. 20.		26 29.人	1.0157		0.9325			502-0
25.580	20.		26 39.2	1.0157		0.9325			502-0 502-0
Liquid Hydro ty of Liqui 9.936	d Hydrocar	io 22. bons 56. (1-e ⁻⁸)	300	ESSURE CA		ONS Speci	fic Gravi	ty Flow: _P _C 12	rator Gas <u>O.</u> ing Fluid <u>O.</u>
	Т			7		· · · · · · · · · · · · · · · · · · ·		/ <i>2</i> 2,	, 329.
Pw	$P_{\mathbf{t}}^2$	F _c Q	$(F_cQ)^2$	(F _c	Q) ² e-s)	P _w 2	$P_c^2 - P_w^2$	Ca]	Pw Pc
P _w Pt (psia)	- /t ·	J			, ,			1 Y	
Pt (psia)	135.2	9754.98	24-75 24	188 12.1	0 14.18	48.34/9.3	12088	384.5	10.72
Pt (psia) 368 384.2	145.2 L	975'	24.75	13.1	0	57.664.46	12178	210.0	6,85
Pt (psia) 368 381.2	135.2 135.2 30.111.5 15.812.1	9754,9x8 1975 1975 1975			0	57.664.48 25.2 9.7		504.5	6,85 4,51

	t <u>I</u>	Sec35		18-8	Rę	ge 35- J	E Pur	chaser P	hillips 1	Petrolem	2-35 m Company
101	r 100 5*										
	ing 2										
_	o <u></u>		1.0	· <u>77</u>	ور د ر	16 26 23	(Y 9	brided .		3.A. 30.18•
s	Pay: From	13620	_To_ <u>138</u>	23	L_13	21 ×	G 0.801		1000	Bar.Pre	ess. 30.18"
	lucing Thru								<i>(~ FR</i> '')		
							Si	ngle_Brade	anhaad C	0 0 0	C Dural
te	of Complet	tion:	<u>9-28-58</u>		_Packe	r Guibers	son Hook	Weservo	oir Temp.	₹800 °	165°F
						OBSERV	ED DATA				
et	ed Through	* D	\ (0h-	.1 \ /1	. \						
<u> </u>	ed Through	2000	7		leter)				Type Ta	ps	lange
_			low Data				Tubin	g Data	Casing	Data	T
	(Prover) (Line)	(Chol	ke) Pr	ess.	Diff.	Temp.	Press	. Temp.	Press.		
1	Size	Siz	, ,	sig	h _w	o _F .	psig	° _F .	psig	o _F .	of Flo
+		 			W	-	3498		 	F •	Hr.
	4.026	2.00	0	26	11	hh	368	78 76	Packer		9
L	4.026	2.00			11	13	211	76		† ·	3
	4.026	2.00			11		110	75			3
╀	4.026 4.026	2.00			ll ll	45	<u>82</u> 53	75 75			3 2 <u>L</u>
Т	Coeffici	ent		Dros	sure	FLOW CAL					
	COETTICI	.em		Pres	sure		remp.	Gravity Factor	Compre		Rate of Flow Q-MCFPD
1	(24-Hou	ır) 🗔	$\sqrt{h_{\mathbf{w}}p_{\mathbf{f}}}$	ps	ia	Ft		Fg_	Fpv	i	@ 15.025 psi
Ì	25.580		20.8	L	120			0,9325	- PV		502.0
	25,580		20.8	26	-39,2	1.0157		0.9325			502.0
	25,580		20.8	1 25	39.2	1.0157		0.9325			502.0
1	25,580		20.8 20.8	+ 3	30 1	1.0157		0.9325			502.0
	25.580					1.0157		0.9325		L	502.0
Li	25.580 iquid Hydro ty of Liqui 9.936	carbon d Hydro	Ratio(1_e	56.3		ESSURE CA		O.9325 CONS Speci Speci Pc_3	fic Gravi 198	ty Flow:	rator Gas <u>0.</u> ing Fluid <u>0.</u>
Li it	iquid Hydro ty of Liqui 9.936	carbon d Hydro	carbons	56.3	60	ESSURE CA		O.9325 CONS Speci Speci Pc_3	fic Gravi	ty Flow:	rator Gas O.
Li rit	iquid Hydro ty of Liqui 9.936 P _W	Pt	carbons	56.3 (60	cf/bbldeg.	ALCUIATI	O.9325 CONS Speci Speci Pc_3	fic Gravi 198	ty Flow: Pc 12	rator Gas 0.
Li	iquid Hydro ty of Liqui 9.936 Pw Pt (psia)	d Hydro	carbons (1-e	56.3 (I	60 0.570 F _c Q) ²	cf/bbl. deg. (Fc	ALCULATI	O.9325 CONS Speci Speci Pc_3	fic Gravi	ty Flow: Pc 12	rator Gas O. (ing Fluid O. (
Li	iquid Hydro ty of Liqui 9.936 Pw Pt (psia)	Pt 135.2	F _c Q	56.3 (I	60 0.570 F _c Q) ²	cf/bbl. deg. (Fc	Q) ² e-s)	O.9325 CONS Speci Speci Pc_3	fic Gravi	ty Flow: Pc 12	rator Gas 0.4 ing Fluid 0.4 23622 1. Pw Pc
Li	iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 381.2	Pt 135.2 10,744.5	F _c Q 49754 4975 4975	56.3 (I (I (9x ? 21 21 21	60 0.570 F _c Q) ² 1.75	cf/bbl.deg.	ALCUIATI (Q) ² (e-s) (Q) (4.18)	O.9325 CONS Speci Speci Pc_3 Pw2 Pw2 188.34/9.34 57.669	P _c -P _w 12088 12178	Call P. 384.5	rator Gas 0.0 ing Fluid 0.0 23656 7.0 Pw Pc 10.72 6.85
Li	iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 381, 2 211 214, 2 110 125, 2	P _t 135.2 30.744.5 15.62.1 1.06.6.7	F _c Q 49754 4975 4975 4975 2 4975	56.3 (1 (9x ? 21 21 21	60 0.570 F _c Q) ² 1.75 1.75	cf/bbl. deg. (Fc (1-	Q) ² -e-s) 0 -1.18	O.9325 CONS Speci Speci Pc_3 Pw2 1.8.34/93/ 57.664/46 25.2.9.3	P _c -P _w 12088 12178 12216	Call P. 384.5 21.0.0 158.0	rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51
Li	iquid Hydro ty of Liquid 9.936 Pw Pt (psia) 368 381.2 211 224.2 110 123.2 82 93.2	Pt Pt 135.2 30,744.5 15.612.1 7.06 6.7	F _c Q 49754 4975 4975 4975 1975	56.3 (1 (9x ? 21 21 21	60 0.570 F _c Q) ² 1.75	Cf/bbl. deg. (Fc (1-	Q) ² -e-s) 0 14.18 3	O.9325 CONS Speci Speci Pc_3 Pw2 Pw2 188.34/9.34 57.669	P _c -P _w 12088 12178 12216	Call P. 384.5	rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 1. Pw Pc 10.72 6.85 1.51 1.01
Livit	iquid Hydro ty of Liquid 9.936 Pw Pt (psia) 363 381.2 211 211.2 210 123.2 82 20.2 51 4 6.2	Pt 135.2 135.2 10.14.5 15.612.1 1.06.6.7	F _c Q 49754 4975 4975 4975 2 4975	(1 (1 (9) (2) (2) (2) (2) (2)	60 0.570 F _c Q) ² 1.75 1.75	cf/bbl. deg. (Fc (1-	Q) ² -e-s) 0 14.18 3	O.9325 CONS Speci Speci Pc_3 Pw2 1.8.34/93/ 57.664/46 25.2.9.3	P _c -P _w 12088 12178 12216	Call P. 384.5 21.0.0 158.0	rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51
Livit	iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 384.2 110 26.2 Lute Potent: NY The	Pt 135.2 135.2 10.74.5 15.612.1 17.65 6.77 11.38 2.83 11.1 Pare 01	F _c Q 49754 4975 4975 2 4975 1 4975 502	(1 (9x / 21 21 21 21 21	60 0.570 F _c Q) ² 1.75 1.75 1.75 1.75	cf/bbl. deg. (Fc (1- 13.11 13.11 MCFPD;	Q) ² -e-s) 0 14.18 : 0 0	O.9325 CONS Speci Speci Pc_3 Pw2 Lis. 34/93/ 57.669/46 25.29/46 19.8423.2	fic Gravi 198 P _C -P _W ² 12088 12178 212211 212216 212220	Call P. 384.5 21.0.0 158.0	rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51
Livit	iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 384.2 211 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 2	Pt 135.2 135.2 10.14.5 12.66 6.73 12.66 6.73 12.66 6.73 12.67 1	F _c Q 49754 4975 4975 4975 1 4975 502	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	60 0.570 F _c Q) ² 1.75 1.75 1.75 1.75	cf/bbl. deg. (Fc (1- 13.11 13.11 MCFPD;	Q) ² -e-s) 0 14.18 : 0 0	O.9325 CONS Speci Speci Pc_3 Pw2 1.8.34/93/ 57.664/46 25.2.9.3	fic Gravi 198 P _C -P _W ² 12088 12178 212211 212216 212220	Call P. 384.5 21.0.0 158.0	rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q \equiv Actual rate of flow at end of flow period at W. H. working pressure (P_w). MCF/da. @ 15.025 psia and 60° F.
- P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- P_{f} Meter pressure, psia.
- hw- Differential méter pressure, inches water.
- $F_g = Gravity$ correction factor.
- Ft Flowing temperature correction factor.
- F_{pv}^{-1} Supercompressability factor.
- n I Slope of back pressure curve.

Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.