| | | NE | W MEXICO | | | ON COMMISS | ION | | | |---|--|--|----------------|---|-------------------------|---------------------------------------|------------------------|--------------------------------|--| | | | | | | • | • | | | Form C- | | | | | - | ا أَنْ فَانْ اللهِ الله | - EH 9 | · | | | Revised 12-1 | | ol South | | | | nRCA | 36 | | | | | | itialX | | | | | | | | | | | mpany The I | are Oil Co | mpany | | Lease | South Va | cuum Unit | We | ell No | 2-35 | | it <u>I</u> | Sec35 | Twp _ 18 | -8 R | ge. <u>35-</u> 1 | <u>Pur</u> | chaser_P | hillips I | Petroleu | m Company | | CARGE_ 5* | Wt. 17.93 | _I.D4 | .276 Se | et at 138 | 381 P | erf <u>13</u> | 620 | _To | 13823 | | oing 2 | Wt. 4.70 | _I.D <u>1</u> | .995 Se | et at 130 | 522 P | erf. Open | Ended | _To | | | Pay: From | 13020 To | 13823 | L_ <u>13</u> ' | 721 x | G_0.801 | GL 1 | 1000 | Bar.Pre | ss. 30.18 1 | | ducing Thru | : Casing | | Tu | ıbi.ng | X | Type We | 377
ell G. (| D. Dual | | | e of Comple | | | | | Sii | ngle-Brade | enhead_G. | $G \cap \Delta r \cap G$ | I O Dual | | | | | | | ED DATA | | • | | · · · · · · · · · · · · · · · · · · · | | ted Through | (December) | (Chales) | (Motom) | | ED DATA | | m . m . | **** | _ | | | Flow | | (Medel) | | | | | ps F | lange | | (Prover) | (Choke) | Press | . Diff. | Temp. | Press. | Data
Temp. | Casing I | Data
Temp. | Duratio | | (Line)
Size | (Orifice) |) | 1 | ł I | | | į. | Ì | of Flo | | 1 002 | | | 1 - " | | 3498 | 78 | Packer | | 64 | | 4.026 | 2.000 | 26 | | 1978
1978 | 368
211 | 76
76 | | | 9 | | 4.026 | 2.000 | 26 | 11 | 15 | 110 | 75 | | | 3 | | 4.026 | 2.000 | 26 | 世 | 4 | <u>82</u>
53 | 75 | | | 3
2h | | | | | | FLOW CAL | | IS | | | | | Coeffici | ent | P | ressure | Flow Tact | * | Gravity | Compress.
Factor | | Rate of Flow | | (24-Hou | r) \sqrt{h} | wpf | psia | F | 1 | Factor
F _g | Fpv | | Q -M CFPD
@ 15. 0 25 psi: | | 25.580 | 20, | | 10c | 1.0157 | | 0,9325 | - PV | | 502.0 | | 25,580 | 20. | | 26-39,2 | 1.0157 | | 0.9325 | | | 502.0 | | 25,580
25,580 | 20.
20. | | 26 29.人 | 1.0157 | | 0.9325 | | | 502-0 | | 25.580 | 20. | | 26 39.2 | 1.0157 | | 0.9325 | | | 502-0
502-0 | | Liquid Hydro
ty of Liqui
9.936 | d Hydrocar | io 22.
bons 56.
(1-e ⁻⁸) | 300 | ESSURE CA | | ONS
Speci | fic Gravi | ty Flow:
_P _C 12 | rator Gas <u>O.</u>
ing Fluid <u>O.</u> | | | Т | | | 7 | | · · · · · · · · · · · · · · · · · · · | | / <i>2</i> 2, | , 329. | | Pw | $P_{\mathbf{t}}^2$ | F _c Q | $(F_cQ)^2$ | (F _c | Q) ²
e-s) | P _w 2 | $P_c^2 - P_w^2$ | Ca] | Pw Pc | | P _w
Pt (psia) | - /t · | J | | | , , | | | 1 Y | | | Pt (psia) | 135.2 | 9754.98 | 24-75 24 | 188 12.1 | 0 14.18 | 48.34/9.3 | 12088 | 384.5 | 10.72 | | Pt (psia) 368 384.2 | 145.2 L | 975' | 24.75 | 13.1 | 0 | 57.664.46 | 12178 | 210.0 | 6,85 | | Pt (psia) 368 381.2 | 135.2
135.2
30.111.5
15.812.1 | 9754,9x8
1975
1975
1975 | | | 0 | 57.664.48
25.2 9.7 | | 504.5 | 6,85
4,51 | | | t <u>I</u> | Sec35 | | 18-8 | Rę | ge 35- J | E Pur | chaser P | hillips 1 | Petrolem | 2-35
m Company | |-----------|--|--|--|---|---|--|---|---|---|----------------------------|--| | 101 | r
100 5* | | | | | | | | | | | | | ing 2 | | | | | | | | | | | | _ | o <u></u> | | 1.0 | · <u>77</u> | ور
د ر | 16 26 23 | (| Y 9 | brided . | | 3.A.
30.18• | | s | Pay: From | 13620 | _To_ <u>138</u> | 23 | L_13 | 21 × | G 0.801 | | 1000 | Bar.Pre | ess. 30.18" | | | lucing Thru | | | | | | | | <i>(~ FR</i> '') | | | | | | | | | | | Si | ngle_Brade | anhaad C | 0 0 0 | C Dural | | te | of Complet | tion: | <u>9-28-58</u> | | _Packe | r Guibers | son Hook | Weservo | oir Temp. | ₹800 ° | 165°F | | | | | | | | OBSERV | ED DATA | | | | | | et | ed Through | * D | \ (0h- | .1 \ /1 | . \ | | | | | | | | <u> </u> | ed Through | 2000 | 7 | | leter) | | | | Type Ta | ps | lange | | _ | | | low Data | | | | Tubin | g Data | Casing | Data | T | | | (Prover)
(Line) | (Chol | ke) Pr | ess. | Diff. | Temp. | Press | . Temp. | Press. | | | | 1 | Size | Siz | , , | sig | h _w | o _F . | psig | ° _F . | psig | o _F . | of Flo | | + | | | | | W | - | 3498 | | | F • | Hr. | | | 4.026 | 2.00 | 0 | 26 | 11 | hh | 368 | 78
76 | Packer | | 9 | | L | 4.026 | 2.00 | | | 11 | 13 | 211 | 76 | | † · | 3 | | | 4.026 | 2.00 | | | 11 | | 110 | 75 | | | 3 | | ╀ | 4.026
4.026 | 2.00 | | | ll
ll | 45 | <u>82</u>
53 | 75
75 | | | 3
2 <u>L</u> | | Т | Coeffici | ent | | Dros | sure | FLOW CAL | | | | | | | | COETTICI | .em | | Pres | sure | | remp. | Gravity
Factor | Compre | | Rate of Flow Q-MCFPD | | 1 | (24-Hou | ır) 🗔 | $\sqrt{h_{\mathbf{w}}p_{\mathbf{f}}}$ | ps | ia | Ft | | Fg_ | Fpv | i | @ 15.025 psi | | Ì | 25.580 | | 20.8 | L | 120 | | | 0,9325 | - PV | | 502.0 | | | 25,580 | | 20.8 | 26 | -39,2 | 1.0157 | | 0.9325 | | | 502.0 | | | 25,580 | | 20.8 | 1 25 | 39.2 | 1.0157 | | 0.9325 | | | 502.0 | | 1 | 25,580 | | 20.8
20.8 | + 3 | 30 1 | 1.0157 | | 0.9325 | | | 502.0 | | | 25.580 | | | | | 1.0157 | | 0.9325 | | L | 502.0 | | Li | 25.580
iquid Hydro
ty of Liqui
9.936 | carbon
d Hydro | Ratio(1_e | 56.3 | | ESSURE CA | | O.9325
CONS
Speci
Speci
Pc_3 | fic Gravi
198 | ty Flow: | rator Gas <u>0.</u>
ing Fluid <u>0.</u> | | Li
it | iquid Hydro
ty of Liqui
9.936 | carbon
d Hydro | carbons | 56.3 | 60 | ESSURE CA | | O.9325
CONS
Speci
Speci
Pc_3 | fic Gravi | ty Flow: | rator Gas O. | | Li
rit | iquid Hydro
ty of Liqui
9.936
P _W | Pt | carbons | 56.3 (| 60 | cf/bbldeg. | ALCUIATI | O.9325
CONS
Speci
Speci
Pc_3 | fic Gravi
198 | ty Flow: Pc 12 | rator Gas 0. | | Li | iquid Hydro ty of Liqui 9.936 Pw Pt (psia) | d Hydro | carbons
(1-e | 56.3 (I | 60
0.570
F _c Q) ² | cf/bbl. deg. (Fc | ALCULATI | O.9325 CONS Speci Speci Pc_3 | fic Gravi | ty Flow: Pc 12 | rator Gas O. (ing Fluid O. (| | Li | iquid Hydro ty of Liqui 9.936 Pw Pt (psia) | Pt 135.2 | F _c Q | 56.3 (I | 60
0.570
F _c Q) ² | cf/bbl. deg. (Fc | Q) ²
e-s) | O.9325 CONS Speci Speci Pc_3 | fic Gravi | ty Flow: Pc 12 | rator Gas 0.4 ing Fluid 0.4 23622 1. Pw Pc | | Li | iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 381.2 | Pt
135.2
10,744.5 | F _c Q
49754
4975
4975 | 56.3 (I
(I
(9x ? 21
21
21 | 60
0.570
F _c Q) ²
1.75 | cf/bbl.deg. | ALCUIATI
(Q) ²
(e-s)
(Q) (4.18) | O.9325 CONS Speci Speci Pc_3 Pw2 Pw2 188.34/9.34 57.669 | P _c -P _w 12088 12178 | Call P. 384.5 | rator Gas 0.0 ing Fluid 0.0 23656 7.0 Pw Pc 10.72 6.85 | | Li | iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 381, 2 211 214, 2 110 125, 2 | P _t 135.2 30.744.5 15.62.1 1.06.6.7 | F _c Q
49754
4975
4975
4975
2 4975 | 56.3
(1
(9x ? 21
21
21 | 60
0.570
F _c Q) ²
1.75
1.75 | cf/bbl. deg. (Fc (1- | Q) ² -e-s) 0 -1.18 | O.9325 CONS Speci Speci Pc_3 Pw2 1.8.34/93/ 57.664/46 25.2.9.3 | P _c -P _w 12088 12178 12216 | Call P. 384.5 21.0.0 158.0 | rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51 | | Li | iquid Hydro ty of Liquid 9.936 Pw Pt (psia) 368 381.2 211 224.2 110 123.2 82 93.2 | Pt
Pt
135.2
30,744.5
15.612.1
7.06 6.7 | F _c Q
49754
4975
4975
4975
1975 | 56.3
(1
(9x ? 21
21
21 | 60
0.570
F _c Q) ²
1.75 | Cf/bbl. deg. (Fc (1- | Q) ² -e-s) 0 14.18 3 | O.9325 CONS Speci Speci Pc_3 Pw2 Pw2 188.34/9.34 57.669 | P _c -P _w 12088 12178 12216 | Call P. 384.5 | rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 1. Pw Pc 10.72 6.85 1.51 1.01 | | Livit | iquid Hydro ty of Liquid 9.936 Pw Pt (psia) 363 381.2 211 211.2 210 123.2 82 20.2 51 4 6.2 | Pt
135.2
135.2
10.14.5
15.612.1
1.06.6.7 | F _c Q
49754
4975
4975
4975
2 4975 | (1
(1
(9) (2)
(2)
(2)
(2)
(2) | 60
0.570
F _c Q) ²
1.75
1.75 | cf/bbl. deg. (Fc (1- | Q) ² -e-s) 0 14.18 3 | O.9325 CONS Speci Speci Pc_3 Pw2 1.8.34/93/ 57.664/46 25.2.9.3 | P _c -P _w 12088 12178 12216 | Call P. 384.5 21.0.0 158.0 | rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51 | | Livit | iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 384.2 110 26.2 Lute Potent: NY The | Pt
135.2
135.2
10.74.5
15.612.1
17.65 6.77
11.38 2.83
11.1
Pare 01 | F _c Q
49754
4975
4975
2 4975
1 4975
502 | (1
(9x / 21
21
21
21
21 | 60
0.570
F _c Q) ²
1.75
1.75
1.75
1.75 | cf/bbl. deg. (Fc (1- 13.11 13.11 MCFPD; | Q) ² -e-s) 0 14.18 : 0 0 | O.9325 CONS Speci Speci Pc_3 Pw2 Lis. 34/93/ 57.669/46 25.29/46 19.8423.2 | fic Gravi
198
P _C -P _W ²
12088
12178
212211
212216
212220 | Call P. 384.5 21.0.0 158.0 | rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51 | | Livit | iquid Hydro ty of Liqui 9.936 Pw Pt (psia) 368 384.2 211 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 110 22.2 21 214.2 2 | Pt
135.2
135.2
10.14.5
12.66 6.73
12.66 6.73
12.66 6.73
12.67 1 | F _c Q
49754
4975
4975
4975
1 4975
502 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 60
0.570
F _c Q) ²
1.75
1.75
1.75
1.75 | cf/bbl. deg. (Fc (1- 13.11 13.11 MCFPD; | Q) ² -e-s) 0 14.18 : 0 0 | O.9325 CONS Speci Speci Pc_3 Pw2 1.8.34/93/ 57.664/46 25.2.9.3 | fic Gravi
198
P _C -P _W ²
12088
12178
212211
212216
212220 | Call P. 384.5 21.0.0 158.0 | rator Gas 0.0 ing Fluid 0.8 23666 7 2 9 10.72 6.85 1.51 | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q \equiv Actual rate of flow at end of flow period at W. H. working pressure (P_w). MCF/da. @ 15.025 psia and 60° F. - P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - P_{f} Meter pressure, psia. - hw- Differential méter pressure, inches water. - $F_g = Gravity$ correction factor. - Ft Flowing temperature correction factor. - F_{pv}^{-1} Supercompressability factor. - n I Slope of back pressure curve. Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.