



FORM C-105



Subscribed and sworn to before me this\_\_\_\_

My Commission expires\_\_\_\_

Notary Public

## NEW MEXICO OIL CONSERVATION COMMISSION

Santa Fe. New Mexico



Date

Representingulf Oil Corp-Gypsy Prodn. Div. Company of Operator

Place

Name\_

Position ....

Mail to Oil Conservation Commission, Santa Fe, New Mexico, or its proper

agent not more than twenty days after completion of well. Follow instructions in the Rules and Regulations of the Commission. Indicate questionable data

WELL RECORD

by following it with (?). SUBMIT IN TRIPLICATE, AREA 640 ACRES LOCATE WELL CORRECTLY Gulf Oil Corporation - Gypsy Prodn. Division Tulsa, Oklahoma. Company or Operator \_\_\_\_Well No. 1 in SE SE NE of Sec.\_\_\_ 24 Graham State \_\_, T\_\_<u>185</u>\_\_ N. M. P. M., Hobbs Field, Lea County. Well is 2310 feet south of the North line and 330 feet west of the East line of Section 24-18S-37E If State land the oil and gas lease is No. 18634 Assignment No. \_\_\_\_\_, Address\_\_\_ If patented land the owner is.\_\_\_ If Government land the permittee is. \_\_\_, Address\_\_\_\_ Drilling commenced August 3, 1930 19 Drilling was completed September 8, 19 30 Name of drilling contractor McQueen & Clevenger , Address Ft. Worth, Texas. Elevation above sea level at top of casing 3667 feet. The information given is to be kept confidential until\_\_\_\_ OIL SANDS OR ZONES 4194 to 4225 \_\_\_\_ No. 4, from\_\_\_ \_ No. 5, from\_\_\_\_ No. 2. from. \_to\_ No. 3, from. IMPORTANT WATER SANDS Include data on rate of water inflow and elevation to which water rose in hole. \_\_\_\_feet. \_\_ feet. \_ \_to\_\_\_ No. 2, from... \_feet. . No. 3, from\_ \_feet. . No. 4, from\_ CASING RECORD CUT & FILLED FROM PERFORATED WEIGHT PER FOOT AMOUNT MAKE SIZE FROM 13 3/8 217' 54# 8 Natl Surface 9 5/8 \*\* 36# 10 28061 Intermediate 40851 65/824# 10 Oil string MUDDING AND CEMENTING RECORD SIZE OF SIZE OF CASING NO. SACKS OF CEMENT AMOUNT OF MUD USED METHOD USED MUD GRAVITY WHERE SET Halliburton 200 217' 13 3/8 9 5/8 28061 600 13 3/4 375 8 1/4 65/840851 PLUGS AND ADAPTERS \_\_\_Depth Set\_\_\_ \_Length\_ Heaving plug-Material \_Size\_ Adapters-Material RECORD OF SHOOTING OR CHEMICAL TREATMENT DEPTH SHOT OR TREATED KXPLOSIVE OR CHEMICAL USED DEPTH CLEANED OUT DATE QUANTITY SIZE SHELL USED None None Not shot or acidized Results of shooting or chemical treatment\_\_\_ RECORD OF DRILL-STEM AND SPECIAL TESTS If drill-stem or other special tests or deviation surveys were made, submit report on separate sheet and attach hereto. TOOLS USED None \_\_\_\_feet to\_\_\_\_\_feet, and from\_\_\_\_\_feet to\_\_\_ Rotary tools were used from\_\_\_\_\_ \_\_\_\_feet to\_\_\_\_ \_\_\_feet, and from\_\_\_\_ \_\_\_feet to\_\_\_ Cable tools were used from PRODUCTION September 8 30 Put to producing... \_\_\_\_barrels of fluid of which 4,200 % was oil; \_\_\_\_\_% 4,200 The production of the first 24 hours was \_\_% water; and\_\_\_\_\_\_\_% sediment. Gravity, Be\_ \_\_\_Gallons gasoline per 1,000 cu. ft. of gas\_\_\_ If gas well, cu, ft. per 24 hours\_\_\_ Rock pressure, lbs. per sq. in.\_\_\_\_ **EMPLOYEES** \_\_\_\_\_, Driller \_\_ ... Driller \_\_\_\_ Driller \_ FORMATION RECORD ON OTHER SIDE I hereby swear or affirm that the information given herewith is a complete and correct record of the well and all work done on it so far as can be determined from available records.

| FROM                                                                                                                                                                                                                              | то                                                                                                                                                                                                              | THICKNESS<br>IN FEET                                                                                                                                                                                                                                                                         | RMATION RECORD  FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0<br>90<br>93<br>165<br>202<br>217<br>813<br>1175<br>1190<br>1290<br>1450<br>1580<br>1640<br>2500<br>2535<br>2710<br>2780<br>2808<br>2811<br>2823<br>2913<br>2995<br>3115<br>3195<br>3285<br>3380<br>3960<br>4085<br>4175<br>4185 | 90<br>91<br>813<br>1175<br>1190<br>1290<br>1450<br>1580<br>1640<br>2500<br>2535<br>2710<br>2780<br>2808<br>2811<br>2823<br>2913<br>2995<br>3115<br>3195<br>3285<br>3380<br>3960<br>4085<br>4175<br>4185<br>4225 | 90<br>3<br>72<br>37<br>15<br>596<br>362<br>15<br>100<br>160<br>130<br>60<br>860<br>35<br>175<br>70<br>28<br>3<br>12<br>90<br>82<br>120<br>80<br>90<br>95<br>580<br>125<br>90<br>125<br>90<br>125<br>90<br>125<br>90<br>126<br>90<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91 | Shale Sand and shells Red Bed Sand and shells Red Bed Shale and Red Bed Red Bed Sandy Lime Sandy lime Shale Anhydrite Shale Salt and Anhydrite Anhydrite Shale and Anhydrite Broken shele and Anhydrite Lime Lime Lime Lime and shale Sand and lime, broken Sand and lime, broken Lime Lime and anhydrite Lime Lime and anhydrite Lime Lime and lime, broken Sand and lime, broken Lime Lime and anhydrite Lime and shale Brown lime Lime Lime and shale Brown lime |  |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |