SANTA FE, NEW MEXICO ## N. AREA 640 ACRES LOCATE WELL CORRECTLY . ## DEPARTMENT OF THE STATE GEOLOGIST ## WELL RECORD Mail to State Geologist, Santa Fe, New Mexico, not more than ten days after completion of well. Indicate questionable data by following it with (2) Submit in duplicate | Company | rung 1007 lettrie Mir. Fort meth. To | |--|---| | | rany Address 1007 Teetric Mig., Fort forth, Te | | | Address | | | in of Sec, T | | R, N. M. P. M., | Oil Field County | | If State land the oil and gas lease is No | Assignment No | | If patented land the owner is | Address | | The lessee is | , Address | | If not state or patented land, give status | | | Drilling commenced | 19 | | Name of drilling contractor | rnald & Toillen Address Bectm, Tema. | | Elevation above sea level at top of casing | | | | tial until | | | | | | OIL SANDS OR ZONES | | 4114-101 | No. 4. from to | | 76273 | Ne. 5, from to | | No. 3, from to to | No. 6, from to | | IMPO | RTANT WATER SANDS | | No. 1, from to | No. 3, from to | | No. 2, from to | No. 4, from to | | | CASING RECORD | | SIZE WEIGHT THREADS MAKE A | KIND OF CUT AND PULLED PERFORATED | | PER FOOT PER INCH | MOUNT SHOE FROM FROM TO | | 9-5/9 50/ | 1786* | | | | | 3" tubing in hole | | | | | | 12 245° No. SACKS OF CEME! 12 245° 200 sacks 9-6/6 2755° CO sacks | NT METHODS USED MUD GRAVITY AMOUNT OF MUD USED | | An State 200 total | | | | | | | LUGS AND ADAPTERS | | PL | LUGS AND ADAPTERS Length Depth Set | | PL | Length. Depth Set | | PL Heaving plug—Material | Length. Depth Set | | PL Heaving plug—Material | Size SHOOTING RECORD | | PL Heaving plug—Material Adapters—Material | Size SHOOTING RECORD | | PL Heaving plug—Material Adapters—Material | Size SHOOTING RECORD | | PL Heaving plug—Material Adapters—Material | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED eet tofeet, and fromfeet tofeet | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED eet tofeet, and fromfeet tofeet eet tofeet, and fromfeet tofeet | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from for the control of | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED eet tofeet, and fromfeet tofeet eet tofeet, and fromfeet tofeet PRODUCTION | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE USE Rotary tools were used from fee Cable tools were used from fee | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED eet to feet, and from feet to feet PRODUCTION 19 | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from for the production of the first 24 hours was | Size SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED eet to feet, and from feet to feet PRODUCTION as barrels of fluid of which % was oil; % | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from for the production of the first 24 hours was emulsion; water; and water; | TOOLS USED eet to feet, and from feet to feet PRODUCTION as barrels of fluid of which % was oil; % % sediment. Gravity, Be. | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US Cable tools were used from for the production of the first 24 hours was emulsion; water; and If gas well, cu. ft. per 24 hours. | TOOLS USED eet to feet, and from feet to feet PRODUCTION 19 barrels of fluid of which % was oil; % Gallons gasoline per 1,000 cu. ft. of gas. | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from for the production of the first 24 hours was emulsion; water; and water; | SHOOTING RECORD TOOLS USED eet to feet, and from feet to feet PRODUCTION 19 | | PL Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from for the production of the first 24 hours was emulsion; water; and figas well, cu. ft. per 24 hours | SHOOTING RECORD TOOLS USED eet tofeet, and fromfeet tofeet production 19 | | Heaving plug—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from for the production of the first 24 hours was emulsion; water; and for the production of the production of the first 24 hours was emulsion; Rock pressure, lbs. per sq. in for the production of the production of the production of the first 24 hours was emulsion; water; and first 24 hours was emulsion; per sq. in for the production of product | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED cet tofeet, and fromfeet tofeet cet tofeet, and fromfeet tofeet PRODUCTION , 19 asbarrels of fluid of which% was oil;% | | Heaving plug—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from Put to producing The production of the first 24 hours was emulsion; If gas well, cu. ft. per 24 hours. Rock pressure, lbs. per sq. in. | SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED eet to feet, and from feet to feet PRODUCTION 19 | | Heaving plug—Material SIZE SHELL USED EXPLOSIVE US Rotary tools were used from for the production of the first 24 hours was emulsion; water; and for the production of the production of the production of the first 24 hours was emulsion; water; and production of the production of the production of the production of the first 24 hours was emulsion; water; and production of the production of the production of the first 24 hours was emulsion; water; and production of the product | Size SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED Seet to feet, and from feet to feet PRODUCTION 19 | | Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE USES Rotary tools were used from for the production of the first 24 hours was emulsion; water; and for the production of the production of the first 24 hours was emulsion; per sq. in for the production of the production of the production of the first 24 hours was emulsion; water; and for the production of the production of the first 24 hours was emulsion; water; and for the production of the production of the first 24 hours was emulsion; water; and for the production of the first 24 hours was emulsion; water; and first 24 hours was emulsion; hereby swear or affirm that the information of the production of the production of the production of the first 24 hours was emulsion; water; and first 24 hours was emulsion; hereby swear or affirm that the information of the production th | Size SHOOTING RECORD SED QUANTITY DATE DEPTH SHOT DEPTH CLEANED OUT TOOLS USED Sect to feet, and from feet to feet PRODUCTION 19 Sediment. Gravity, Be Gallons gasoline per 1,000 cu. ft. of gas St. 14,000,000 feet gas EMPLOYES Driller Driller Driller Driller Driller ION RECORD ON OTHER SIDE mation given herewith is a complete and correct record of the well and | | Heaving plug—Material Adapters—Material SIZE SHELL USED EXPLOSIVE US Cable tools were used from form form form form form form form | Size SHOOTING RECORD TOOLS USED eet to feet, and from feet to feet PRODUCTION 19 | Position... Notary Public Sell tested July 4th 4th hile to one have Representing. Company or Operator ## FORMATION RECORD | ** | | Thickness | | |--|--|--|--| | From | to | in Feet | Formation | | A | | | | | 6 | . 67 | Ca licho
Se nd | | | 47 | 93 | Seed. | | | 96 | 304 | Send and water | • | | 104
110 | 130
230 | Filet seek
Seed end gree | | | 200 | 245 | 3nd bods | | | 245 | 205 | Sed beds and | shells . | | \$86
540 | 548 | Red beds | | | 342
374 | 374
402 | Sant, grevet (
Set rock | and the later | | # 1 | 552 | and had | | | 882 | 570 | Sed cond | | | 570 | 673 | and bod | 15 | | 673
846 | 366
902 | and beds and :
and rock | | | 908 | 947 | Send red | | | 947 | 960 | and bud | | | 13.67 | 1147 | Sendy red red
Send hard | | | 1196 | 1,905 | send bard | | | 1495
1450 | 1230 | sol rock | | | 1:056 | 1236
1248 | iem£
ied voek | | | 1246 | 1:56 | and hard | | | 1.004 | 1,998 | ded rock send | 7 | | 1.996
1.996 | 1206 | and bed | | | 1306 | 1305 | ied rock
ied rock send | • | | 1362 | 1402 | andy sed sod | | | 1408 | 1495 | sticky red ro | | | 1425
1465 | 1445 | Sendy Shalls :
Send and med : | | | 1405 | 1480 | ankydyt to | | | 1450 | 1487 | anaytri to | ^ | | 1467
1589 | 1529
1396 | Ambydrite whi
Ambydrite wad | | | 1200 | 1602 | Anhydrite | | | 1602 | 1.660 | ials | | | 1600
1670 | 1970 | Salt eed enby | عينا الم | | 1770 | 1702 | Anhvirite | es in | | 1702 | 1795 | Sell | | | 1793
1796 | 1706 | A nkydri to
Sa lt | | | 1882
1882 | 1041 | Anistri to | | | 1941 | 3978 | iell | | | 1676
2006 | 5095
2097 | Selt enkydrite
Ankydrite | • | | 2007 | 2169 | - Salt | | | 22.00 | 2539 | Selt amhydrit | | | 2519
2505 | 2593
3480 | Salt ambydrite
Salt ambydrit | | | 3480 | #515 | Bruican ambydri | | | 2515 | 2585 | Red bed. | | | 2505 | 2657 | inhydri to | | | 2657
2633 | 962]
3647 | ielt and anhyd | | | | | Salt ankydri | i to | | | 2000 | | | | 3607 | 2050
2074 | .anhydref to | | | 2075 | 2075
2770 | inhydrite
inhydrite | sni sakvirite | | 2075
2075
2770 | 2075 | inhydrite
Anhydrite
Rysken lime
Proken lime | and enhytrite | | 2075
2075
2770
2326
2008 | 2078
2770
2008
2062
2860 | inhydrite
Anhydrite
Broken lime
Stele blue | and anhydrite | | 2075
2075
2770
2525
2506
2500 | 2078
2770
2018
2062
2000
2006 | imbyleite
Anbyleite
Myshon lime
Probon lime
Shale blue
Anbyleite w | and anhydrite | | 9000
9073
9770
9398
9008 | 2078
2770
2008
2062
2860 | Anhydrite Anhydrite Resken lime Resken lime Shale time Anhydrite ut Anhydrite Broken lime | and anhydrite | | 2000
2075
2770
2528
2002
2000
2000
2015
2015 | 2078
2770
2008
2062
2062
2006
2006
2006
2025
2046 | inhydrite Inhydrite Ipoles lime Prokes lime Shale blue inhydrite u Anhydrite Brokes lime inhydrite | and anhydrite | | 2000
2075
2770
2526
2502
2500
2006
2015
2015
2016 | 2078
2770
2008
2062
2008
2008
2025
2025
2046
2054 | imbylerite Anhydrite Rectan lime Anale blue Anhydrite ul Anhydrite Anhydrite Anhydrite Anhydrite ul Anhydrite ul Anhydrite ul Anhydrite ul Anhydrite ul | and anhydrite | | 2075
2075
2770
2528
2502
2500
2006
2015
2015
2016
2016
2016 | 2078
2770
2080
2062
2000
2006
2006
2025
2025
2046
2007 | inhydrite Inhydrite Ipoles lime Prokes lime Shale blue inhydrite u Anhydrite Brokes lime inhydrite | and enhydrite hits and brown stake hits | | 2075
2075
2770
2526
2582
2582
2580
2006
2015
2015
2016 | 2078
2770
2018
2018
2018
2018
2018
2018
2017
2018
2018 | imbydrite Anhydrite Anhydrite Archen lime Archen lime Anhydrite Anhydrite Anhydrite Shele blue Anhydrite Anhydrite Shele blue Anhydrite | and enhydrite hits end brown stake hits ad shale | | 2000
2075
2770
2025
2000
2000
2000
2015
2015
2016
2016
2017
2161
2100 | 2078
2770
2016
2016
2016
2016
2016
2017
2011
5106
3214 | imbylerite Indica lime Proten lime Proten lime Shale blue Anhydrite Broken lime Anhydrite Shale blue Anhydrite Anhydrite Shale blue Anhydrite | and enhydrite and brown state at the | | 9600
2675
8770
9526
2692
2692
2693
2693
2694
2694
2694
2694
2694 | 2078
2770
2018
2062
2062
2063
2065
2064
2007
2161
2166
2244
2844 | imbylerito Invited lime Eroken lime Eroken lime Eroken lime Eroken lime Ambylerite Eroken lime Ambylerite Shele bime Ambylerite Eroken samby Sand brown Soft grey o | and enhydrite and brown state at the | | 2000
2075
2770
2025
2002
2000
2006
2015
2015
2016
2016
2017
2181
2194 | 2078
2770
2080
2062
2003
2003
2003
2004
2007
2161
5106
3244
3516
3643 | imbyleite Ankyleite Rechen lime Exchen lime Ankyleite w Ankyleite w Ankyleite w Shale blue Ankyleite w Shale blue Ankyleite w Shale blue Ankyleite w Exchen canky Sand brown Soft gray o Ankyleite Ankyleite | and enhydrite hits and brown state hits hits hits hits hits | | 2075
2075
2075
2008
2008
2015
2015
2015
2016
2016
2016
2016
2016
2016 | 2078
2770
2688
2662
2662
2663
2664
2664
2007
2161
2166
2234
2516
2516
2516
2516 | Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Broken line Anhydrite Anhydrite Shele blue Anhydrite | and enhydrite hits end brown stake hits ni shale lime | | 2075
2770
2528
2528
2520
2020
2020
2025
2025
202 | 2078
2770
2088
2062
2000
2006
2015
2025
2046
2007
2161
2196
2234
2516
2516
2516
2516 | Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Broken line Anhydrite Anhydrite Shele blue Anhydrite | and analyticals and brown state at the at the and and | | 2075
2075
2075
2098
2098
2035
2035
2046
2046
2054
2007
2181
2296
2016
2016
2016 | 2078
2770
2018
2018
2018
2018
2018
2018
2018
201 | imbylerite Implies lime Ireles lime Ireles lime Indes l | and analyticals and brown stable bits ad shale lime and | | 2000
2075
2770
2025
2000
2000
2015
2015
2016
2016
2016
2016
2016
2016
2016
2016 | 2078
2770
2082
2082
2083
2083
2084
2007
2381
2396
2894
2516
2516
2516
2516
2516
2516
2516
2516 | Anhydrite Anhydrite Apples lime Anhydrite | and analyticals and brown stable bits ad shale lime and | | 2075
2770
2528
2502
2502
2503
2515
2515
2516
2516
2516
2516
2516
2516 | 2078
2770
2688
2662
2662
2663
2663
2644
2007
2361
2566
2544
2514
2514
2514
2514
2514
2514
2514 | imbylerite Implies lime Ireles lime Ireles lime Indes l | and analyticals and brown stable bits ad shale lime and | | ###################################### | 2078
2770
2682
2662
2662
2663
2663
2664
2664
2664
2616
2616
2665
2665
2665
2665
2665
2665 | imbylerite Inplies lime Eroken lime Eroken lime Enale blue Anhydrite ut Ankydrite ut Shele blue Anhydrite ut Shele blue Anhydrite ut Shele blue Anhydrite Eroun anniy Sand brown Soft gray a Inkydrite Recen anni Eroken been Loft anni g Eroken been Loft anni g Eroken been Lime From anni Lime From anni Lime | and analysiste and shale lime and posmi and shale gey | | 2000
2075
2770
2025
2020
2020
2020
2025
2025 | 2078
2770
2088
2062
2006
2006
2015
2025
2044
2007
2161
2196
224
2516
2516
2516
2516
2516
2516
2516
2516 | Anhydrite Inplose lime Eroken lime Eroken lime Enale blue Anhydrite w Anhydrite w Shele blue Anhydrite an Shele blue Anhydrite an Shele blue Anhydrite Erown sandy Sand brown Soft gray a Anhydrite Erown sand Erown sand Erown sand Lime Erown sand | and analysise and brown state at the at the and and and and and and and an | | 2000
2075
2770
2025
2020
2020
2020
2025
2025 | 2078
2770
2018
2018
2018
2018
2018
2018
2019
2019
2018
2016
2016
2016
2016
2016
2016
2016
2016 | Anhydrite Inplose lime Proken lime Proken lime Anhydrite wi Anhydrite wi Anhydrite wi Shele blue Anhydrite wi Shele blue Anhydrite Anews been Loft eand b Anydrite Proken sand Lime Prown sand Lime Prown sand Lime Proken sand Anhydrite Proken sand | and analysiste and shale lime and posmi and shale ger | | 2000
2075
2770
2025
2020
2020
2020
2025
2025 | 2078
2770
2088
2062
2006
2006
2015
2025
2044
2007
2161
2196
224
2516
2516
2516
2516
2516
2516
2516
2516 | Anhydrite Anna Antydrite Antydrite Antydrite Antydrite Antydrite Antydrite Antydrite Antydrite | and analysise and brown state at the at the and and and and and and and an | | ###################################### | 2078
2770
2688
2662
2662
2663
2663
2664
2007
2181
2166
2516
2516
2516
2516
2516
2516
251 | Ambydrite Antydrite Broken lime Antydrite with antydrite with the blue Antydrite Antydrite Antydrite Antydrite Antydrite Brown send From send Lime From send Ideal brown Antydrite From send Lime From send Lime From send Lime From send Lime Antydrite Lime end br Antydrite Lime end br Antydrite Lime end br Antydrite Lime end br Antydrite | and analysiste and brown state at the at the at the at the and and and and and and and an | | ###################################### | 2078
2770
2682
2662
2662
2663
2663
2664
2664
2665
2665
2665
2665
2665
2665 | Ambydrite Antydrite Antydrite Antydrite Antydrite Antydrite Broken lime Antydrite Brown and Protes, been Antydrite Brown and Erown and Iime Protes and Iime Protes and Iime Protes and Iime Protes antydrite Intydrite | and analysiste and brown state at the at the at the at the and and and and and and and an | | ###################################### | 2078
2770
2088
2062
2006
2006
2007
2161
2007
2161
2196
2644
2516
2646
2516
2648
2505
2601
2601
2601
2601
2601
2601
2601
2601 | Anhydrite | and analysise and shale lime and and and bess crite, brown send and show of pas cost gas send | | ###################################### | 2078
2770
2088
2068
2006
2006
2007
2161
2007
2161
2106
2516
2516
2516
2516
2516
2516
2516
251 | Anhydrite Imples lime Recken lime Ankydrite wi Anhydrite wi Anhydrite wi Shele blue Anhydrite wi Shele blue Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anno annd Brown annd Brown annd Lime Prown and Lime Prown and Lime Prown and Lime Prown and Anhydrite | and analysis and shale and show of one out see thank | | ###################################### | 2078
2770
2088
2062
2006
2006
2007
2161
2007
2161
2196
2644
2516
2646
2516
2648
2505
2601
2601
2601
2601
2601
2601
2601
2601 | Anhydrite | and analysis and shale and show of one out see thank | | ###################################### | 2078
2770
2688
2662
2662
2663
2664
2664
2664
2665
2665
2665
2665
2665 | Anhydrite Region lime Region lime Anhydrite of Anhydrite of Shele blue Anhydrite of Shele blue Anhydrite of Region sandy Sand brown Soft grey of Anhydrite Region sand Region bown Anti-disconding Region sand Lime Proun lime Anhydrite Region lime Lime and an and | and brown while and brown while it to and whale live and and and crite, brown send and show of pac cost gas send and anhydrite aite (60°) shydrite | | #### ################################# | 2078
2770
2688
2662
2662
2663
2664
2664
2664
2665
2665
2665
2665
2665 | Imbydrite Inches lime Breken lime Shale blue Ashydrite wi Ashydrite wi Shale blue Ashydrite wi Shale blue Ashydrite wi Shale blue Ashydrite wi Shale blue Ashydrite Lime Prown and Lime Prown and Ashydrite Lime end br Ashydrite Lime end br Ashydrite Lime and so Ashydrite Lime and so Ashydrite Lime and so Ashydrite Ashydrite Lime and so Ashydrite | and anhydrite and shale lime and and and and crite, brown and shale cott gas mand and anhydrite | | ###################################### | 2078
2770
2088
2062
2006
2006
2007
2161
2007
2161
2007
2161
2006
2006
2006
2006
2006
2006
2006 | Anhydrite Region lime Region lime Anhydrite of Anhydrite of Shele blue Anhydrite of Shele blue Anhydrite of Region sandy Sand brown Soft grey of Anhydrite Region sand Region bown Anti-disconding Region sand Lime Proun lime Anhydrite Region lime Lime and an and | and brown while and brown while it to and whale live and and and crite, brown send and show of pac cost gas send and anhydrite aite (60°) shydrite | | ###################################### | 2078
2770
2688
2662
2662
2663
2664
2664
2664
2665
2665
2665
2665
2665 | antydrite Instant lime Inst | and analysiste and shale lim and and shale lim and confidence confiden | | #### ################################# | 2078
2770
2008
2008
2008
2008
2007
2161
2007
2161
2007
2161
2006
2006
2006
2006
2007
2007
2008
2008
2009
2009
2003
2009
2003
2009
2003
2009
2003
2009
2003
2009
2003
2009
2003
2009
2003
2009
2003
2009
2003
2009
2009 | anhydrite Invited lime Invited lime Invited the Invited of Individuate the Invited of Invited the Invited of Invited the Invited of Invited the Invited of Invited the | and anhydrite and thous shale and shale lime and south and shale south cost gas soud and anhydrite and anhydrite and shale (60°) hydrite and oil show lime and oil show | | #### ################################# | 2078
2770
2008
2008
2008
2008
2007
2161
2007
2161
2007
2161
2006
2006
2006
2006
2006
2007
2007
2007 | Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Brohen line Anhydrite Anhy | and anhydrite and brown shale at shale lime and and and and and corite, brown send and show of pas core: ges send and anhydrite and oil show lime and oil show lime price | | #### ################################# | 2078
2770
2008
2008
2008
2008
2008
2007
2361
2007
2361
2008
2006
2008
2008
2008
2007
2008
2008
2008
2009
2009
2009
2009
2009 | anhydrite Anhydrite Broken lime Shale bine Anhydrite Broken lime Anhydrite Broken lime Anhydrite Brown send Broken send Lime From lime Anhydrite Recten Grey send Blue grey lime Grey send Blue grey lime Grey send Blue grey lime | and anhydrite and brown shale hits and shale lime and considerate, brown sand and show of gas own gas send own gas send own gas send and oil show lime gartes Top of enhydrite top of enhydrite Sep brown lime grown send shale Rese salt Rese salt Rese salt | | #### ################################# | 2078
2770
2088
2062
2006
2015
2025
2044
2007
2161
2106
2516
2516
2516
2516
2516
2516
2516
251 | anhydrite Anhydrite Broken line Shale bine Anhydrite Broken line Anhydrite Broken line Anhydrite Brown aend Broken been Oft eand b Gurd eand g Eroun aend Line From aend Line From aend Line From line Anhydrite Anhydrite Proten line Anhydrite Brown line Line and se Brown line Line and se Brown line Crey send Blue grey line Grey send Blue grey line Grey send Blue grey line Grey send Blue grey line | end enhydrite and shale lime and shale lime and and shale strike, brown sond and show of gas out sess stand and enhydrite tite (60°) theorite and oil show lime rep of enhydrite tite (70°) theorite and show lime rep of enhydrite and show and show lime rep of enhydrite and show and show and show lime rep of enhydrite | | #### ################################# | 2078 2770 2088 2062 2006 2006 2015 2025 2044 2007 2161 2166 2544 2516 2546 2516 2546 2516 2546 2516 2546 2516 2546 2516 2546 2548 2505 2548 2506 2548 2506 2548 2506 2548 2506 2548 2506 2548 2507 2428 2508 2509 2509 2509 2509 2500 2509 2500 2509 2500 2500 | anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Brohnn lime Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Brown aund Anhydrite From and Lime From and Inch brown Anhydrite From and Inch brown Anhydrite Proken anhy Anhydrite Proken anhy Anhydrite Proken anhy Anhydrite Proken lime Anhydrite Brown Brown lime Anhydrite Brown lime li | and analysise and analous and and and and and and and an | | #### ################################# | 2078
2770
2088
2062
2006
2015
2025
2044
2007
2161
2106
2516
2516
2516
2516
2516
2516
2516
251 | anhydrite Anhydrite Broken line Shale bine Anhydrite Broken line Anhydrite Broken line Anhydrite Brown aend Broken been Oft eand b Gurd eand g Eroun aend Line From aend Line From aend Line From line Anhydrite Anhydrite Proten line Anhydrite Brown line Line and se Brown line Line and se Brown line Crey send Blue grey line Grey send Blue grey line Grey send Blue grey line Grey send Blue grey line | and analogue while hits and shale lime and and shale and and shale area crite, brown send and show of pas out yes send and anhydrite hits (cc) hydrite and oil show lime yer the Top of salt Rep brown lime yer the private private Bene salt Sep brown lime yer the private | | #### ################################# | 2078
2770
2008
2008
2008
2007
2007
2007 | Anhydrite Anhydrite Rectan lime Anhydrite Anhydrite Broken lime Anhydrite Broken lime Anhydrite Iime From and Iime From lime Anhydrite Iime and se Anhydrite Iime and se Anhydrite Iime Anhydrite Iime Anhydrite Iime Iime Anhydrite Iime Iime Iime Iime Iime Iime Iime Iim | and analydrite and shale lim and and and and and and corite, brown send and show of gas own gas wand and enhydrite hard possess hard possess hard possess hard possess | | #### ################################# | #### ################################# | Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Brown lime Anhydrite Brown annhy Sand brown Soft gray a Anhydrite Brown annd Brown annd Iime From annd Iime From annd Iime From and Iime From and Iime From and Iime From lime Lime and se Brown Crey sand Blue gray I Lime and se Crey sand Blue gray I Lime and se Crey sand Blue gray I Lime and se Lime brown | and analydrite hits and shale lime and and and shale rean regs send crite, brown send and show of gas out gas send and anhydrite hits (60°) sporite and oil show lime yet to and oil show lime yet to Top of anhydrite top of anhydrite seld Sep brown lime seld hard posseus hard posseus | | #### ################################# | 2078
2770
2008
2008
2008
2007
2007
2007 | Anhydrite Restan lime Restan lime Restan lime Anhydrite Restan lime Anhydrite Restan lime Anhydrite Shele blue Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Restan annd Anhydrite Restan lime Lime and se Restan lime Cary send Rite lime Cary send Rite lime Cary send Rite lime Cary lime Lime bestan | and analydrite hits end brown simile hits and shale lime and and and shale moun pay seed crite, brown seed and show of gas out gas seed and shiptrite hits (for) deporite and shiptrite first rep of sale lime rep of sale representation |