Company or Operator. CATE # Form SC 108 N. AREA 640 ACRES # NEW MEXICO STATE LAND OFFICE SANTA FE, NEW MEXICO ### DEPARTMENT OF THE STATE GEOLOGIST ## **WELL RECORD** | | y Steneline | | | | 4 | | | | | |---------------------------------|----------------------------|-------------------------------------|---------------------------------|---------------------------------------|--------------------------|---------------------|--------------|-----------------------|-----------| | | Turner | | | | | | | | | | ł | B. E. , N. | М. Р. М., | ···· | Hobb | Oil Field | | Les | | County | | | land the oil a | | | | _ | | | | Mondon | | he less | ted land the oversee is | olimi Oi | l and G | as Comp | ery. | , | Address | Nulsa, Ok | labous | | | commenced | | | | | | | | | | | commancedf drilling contra | | | | | = | | - | | | | n atove sea lev | | | | | | Auu CSS | | | | | rmation given | | | | | | | 19 | | | | | | | | | | | | | | 'n 1 | from Ges | 294I | | | DS OR Z | | | to | | | | from Co.6 | 4002 | | | | | | | | | | from Cas | 4115 | | | | | | | | | | | | | | r water | | | | | | o. 1, 1 | from | 59 | to | 105 | | rom | | to | | | o. 2, | from | | to | | No. 4, f | rem | | to | | | | | | | | | | | | | | | | | | CASI | NG RECO | | | DEOD : =- | | | SIZE | WEIGHT
PER FOOT | THREADS
PER INCH | MAKE | AMOUNT | KIND OF
SHOE | CUT & PULL:
FROM | ED PE
FRO | RFORATED
M TO | PURPOS | | 16" | 70# | 8 | L.W. | 223'11 | | | | | Water | | 3/4" | 45.5 | 10 | S.S. | 1646'6'
8976'3 | | | | | Protec | | | | | | | | | | | | | | | ···· | | | | **** | | | | | | | | | | | | | | | | <u> 14"</u> | ISAG'S" | | 90
850 | | alliburton
alliburton | | | | | | <u>7*</u> | 397615* | 1 | (50 | | alli burton | | ······ | | | | · | <u></u> | 10 100 | | | | | | 1 | | | | | | PI | LUGS A | ND ADAI | PTERS | | | | | eaving | plugMaterial | | ******************************* | Leng | th | | Depth Set | | | | dapters | Material | | ····· | Size. | | | | | | | | | | ć | TI O O TI S | ING RECO | ממו | | | | | SIZE | SHELL U | SED EX | PLOSIVE | | | | PTH SHOT | 1 | EANED OUT | · · · · · · · · · · · · · · · · · · · | | | | <u> </u> | | | | | | | ТО | OLS USEI |) | | | | | stany t | ools were used | from |) f | | | | f | set to | foa | | - | ols were used f | ÷ | PRO | DUCTION | | | | | | | to producing | ep tember | rI. | , 19 | 5 <u>4</u> | | | | | | Put | | ne first 24 h | ours was | 7385 | barrels of | fluid of which | IOQ | _% was oil; | Hone 9 | | The | _ | | | | | | | | | | The
nulsion | ; Kone 9 | | . 5,509 | - | | | | | | | The
nulsion
If ga | ; Mone 9 | | | | TO STATE | ITOA OF | PRO ROUT | olii ei ei | Test 8/30 | | The
nulsion
If ga | ; Kone 9 | | | | | | | | | | The
nulsion
If ga | ; Mone 9 | | | | MDI AVEC | | | | | | The
nulsion
If ga | as well, cu. ft. | per sq. in. | | E | MPLOYES | d. c. s. | | | wa | | The
nulsion
If ga | as well, cu. ft. | per sq. in. | | E N | Oriller | | | | • | | The
nulsion
If ga | as well, cu. ft. | per sq. in. | | E N, 1 | Oriller | | | | , | | The
nulsion
If ga
Rock | as well, cu. ft. | per sq. in L. Jone | FORM | E N, 1 | Oriller | THER SIDE | | | , Drille | | The nulsion If ga Rock | as well, cu. ft. | per sq. in L. Jone ffirm that the | FORM. | EN., I ATION RI | Oriller Oriller Oriller | THER SIDE | correct reco | r d of the wel | Drille | Notary Public. My commission expires October 17th, 1934 ### FORMATION RECORD | | I . | | PRMATION RECORD | |----------------------------|-----------------------------|------------------------|--| | FROM | то | THICKNESS
IN FEET | FORMATION | | 0 | 38 | 36 | Caliche | | 36 | IOS | 67 | Soft water sand | | 105
1 5 0 | ISO
ISO | 25
30 | Send and shells
Hard lime | | 160 | 180 | 20 | Soft said | | 180
212 | 212
218 | 32 | Sand and white lime shells
Broken sand and lime | | 218 | 225 | 7 | Red beds | | 225
685 | 655
892 | 430
257 | Red beds and streaks of blue shale
Red beds | | 892 | 1097 | 205 | Red beds, gravel and sand | | 1097
11 2 0 | 1120
1240 | 25
120 | Red bods. Red rock and conglowerate shells | | IRAO | 1448 | 200 | Red rock, red and blue shale with streaks of gypsum | | 1448
1452 | 1452
1467 | 4
15 | Gypsum Red rock and blue shale | | 1467 | ISSS | 71 | Red shale and gypsum | | 1586
1546 | 1546
1548 | 8 | Sandy shale Red shale and gypsum | | 1548 | 1861 | 35 | Red beds, sand and gypsum | | 1501
1595 | 1595
1605 | IS
IS | Red rock Proken sandy lime | | 1605 | 1646 | 41 | Red rock and streaks of gypsum | | 1646
1651 | 1651
1718 | 5 | Green and bine shale
Anhydrite | | 1718 | 1780 | 62 | Broken potesh, salt and anhydrite | | 1780
1810 | 1810
1900 | 90 | Potesh and anhydrite
Potesh, selt and strocks of shells | | 1900 | 2010 | IIO | Salt and streaks of blue shale | | 2010
2084 | 2084
2194 | 74 | Broken potesh, salf and shale
Shale and potesh | | 2104 | 2270 | 166 | Potash, with streks of light blue shale and red beds | | 2270
2318 | 2518
2445 | 48
127 | Salt and potash shells | | 2445 | 2462 | 17 | Salt and lime shells | | 2462 | 2520 | 38
99 | Salt and potash
Salt | | 2490
2 50 0 | 2600 | 20 | Sell, potesh and line shells | | 2600
2605 | 2665
2780 | 97 | Selt and shells
Selt and anhydrite | | 2780 | 2795 | 13 | Hed and bine shale | | 2793 | 2820 | 27
IB | Anhydrite with streaks of blue shale
Sticky blue shale | | 2820
2835 | 2055
2042 | 7 | Blue shale with anhydrite shells | | 2842 | 2004 | 42
56 | Anhydrite and small breaks of gypsum Anhydrite and shale streaks | | 2024
2020 | 294I | 21 | light brown lime and ankydrite with streaks of gypsu | | 2941 | 2947 | 6
33 | Ges sand
Sandy lime and anhydrite | | 2947
2960 | 2980
3015 | 35
35 | Broken anhydrite and gypsum | | 30IS | 5044 | 29
44 | Grey lime
Grey lime and anhydrite | | 5044
5088 | 5088
8137 | 49 | Anhydri to | | 81.87 | 8145 | 8
20 | Archen sendy lime Anhydrite and lime shells | | 3145
3165 | 5165
3175 | 10 | Broken sendy lim | | 5178 | 5185
5196 | II
II | Semity grey lime | | 8185
8196 | 8420 | 24 | Green Line and anhydrite | | 3260
3260 | 3860
3299 | 40
39 | Anhydrite and line shells Anhydrite and streaks of blue shele | | 5209 | 3318 | I9 | inhydrite and sandy shale | | 3516
3526 | 5526
554I | e
Is | Blue shale
Anhydrite and streams of blue shale | | 354I | 5855 | 14 | Gyposa. | | 3355
3436 | 34 36
3440 | 8I
4 | Anhydrite and gypsum
Cypsum | | 5440 | 3486 | 4.6 | Anhydrite | | 5486
8520 | 5520
5530 | 54
IO | Gypsum
Anhydrite | | 3550 | 5544 | 14 | Anhydrite and gypsum | | 5544
3658 | 35 56
3567 | 14 | Kight blue shale
Anhydrite and small breaks of pink shale | | 3567 | 3504 | 17 | Gypaun | | 5564
5567 | 3597
36 10 | 5
25 | Blue shele
Anhydrite and gypsum | | 56 I0 | 3670 | 60 | Light grey medium hard anhydrite | | 5670
5674 | 3674
3677 | 4 5 | Anhydri to
Pink shalo | | 3677 | 36 9I | 14 | Broken anhydrite and grey lime | | 3691
3692 | 3692
3780 | 1
86 | Streak of sant
Broken line and anhydrite | | 3780 | 5799 | 19 | Gypsum and enhydrite | | 3799
3615 | 3818
3834 | 14
21 | Sand
Broken sand and anhydrite | | 2654 | 8840 | • | Ambydrite | | 5840
588I | 388I
3954 | 4I
73 | Grey lime and anhydrite Brown and hard grey lime | | 3954 | 3980 | 26 | Hard grey and white lime | | 5980
4002 | 4008
4057 | 92
55 | Brown lime
Saturated grey lime | | 4087 | 4060 | 8 | Hard white lime | | 4060
4065 | 4065
4118 | 5
5 0 | light blue lime Brown lime | | 4115 | 4120 | 5 | Brown lime, heavily saturated with oil | | 4180
4190 | 4190
4199 | 70 | Saturated grey lime
Grey lime and anhydrite, saturated | | STAR | | | | | | | | | | | | | | | | | | |