WС A.N ## NEW MEXICO OIL CONSERVATION COMMISSION Santa Fee New Mexico O. C. C. ## Jun 2 2 57 PM '64 WELL RECORD Mail to District Office, Oil Conservation Commission, to which Form C-101 was sent not later than twenty days after completion of well. Follow instructions in Rules and Regulations of the Commission, Submit in OUINTUPLICATE. If State Land submit 6 Copies | Well No | 7 | npany or Operator | • | , | State of New | Mexico "Q | | | |---|---|---|--|-----------------------------------|------------------------|----------------|----------|---| | Vacuum Upp Well is 1833 of Section Drilling Comme | ······ · | . III | ·) | | | (Lease) | | | | Well is 1833 of Section | D | 17 | 4 Ol) | 4, or Sec | T | Lea | , K | l | | of Section | er Penn -
Vacuum A | <u>Vacuum M</u>
bo Vorth | OMSOILLO
desco | Pool, | ٦ ٥١.٢ | | | `ne l | | Drilling Commo | | feet from | South | line and. | 1045 | leet from | m | | | | 25 | If State | Land the Oil an | d Gas Lease No | B-10 | 20 - 1 | | | | | enced | March 27 | , | 19. ⁶⁴ Drilli | ng was Completed | May 10 | ••••• | 1 | | Name of Drilling | | | | | ipany | | | | | | | | | | dessa, Texa | | | | | Address | | | h0 | 081 (D. F. |) The in | | | | | Elevation above
September | sea level at T | op of Tubing H | cad 64 | | The in | ormation given | is to be | kept confidenti | | | *************************************** | ····· | 19 | | | | | | | See attac | hed sheet | ; | оп | SANDS OF | ZONES | | | | | | | | | | 4, from | | to | | | - | | | | | 5, from | | | | | • | | | | | - | | _ | | | • | | | | | 6, from | , | to | •••••••••••• | | Trilled W | ntn rotai | ry tools a | nd no water
mpor | r sands te:
Tant wate : | | | | | | Include data on | rate of water | inflow and ele | vation to which v | | | | | | | | | | | | | feet. | | | | - | | | | | | | | | | • | | | | | | | | | | - | | | | | e | | | | | No. 4, from | | *************************************** | to | ****************** | | feet | • | *************************************** | | | | | _ | A CONTA DIMO | , | | | | | | | 1 | | CASING RECO | | | | | | SIZE | WEIGHT
PER FOOT | NEW OR
USED | AMOUNT | KIND OF
SHOE | CUT AND
PULLED FROM | PERFORATIO | ON8 | PURPOSE | | 13 3/8" | 27.06 | NEM | 3751 | Ночсо | None | None | | Surface | | 9 5/8" | 36.00 | NEW | 47861 | Howco | None | None | | Intermedia | | 2 7/8"
2 7/8" | 6.50 | NEW | 101801 | Номсо | None None | see attac | | Production
Production | | 2 7/8"
2 7/8" | 6.50
6.50 | NEM
NEM | 10183 | Howco | None | see attac | | Production | | <u> </u> | 0.00 | 11111 | _ | | TING RECORD | 550 20020 | | | | •, | | WHERE | - | METHOD | | MUD | | AMOTINE OF | | - | 17808 | SET | NO. SACES
OF CEMENT | USED | G | RAVITY | • | AMOUNT OF
MUD USED | | SIZE OF S | CASING | | | | | | | | | SIZE OF SHOLE | 3/8" | 3901 | 400 | Нотсо | | | | | | 81ZE OF 8
HOLE 13 | 3/8"
5/8" | 390 1 | 1700 | Ноисо | | | | | | 61ZE OF 6 17" 13 12.1" 9 | 3/8"
5/8"
7/8" 1 | 3901 | | | | | | | ## decond of emillethm and special there If drill-stem or other spec... tests or deviation surveys were made, submit report on separate sheet and attach hereto ## TOOLS USED | Cable too | ls were used | i from | f | ect t | :0 | feet, a | ind from. | | feet to |) | |--|--|--|--|--|---|----------|-----------|------------------|---|---| | | | | | | PRO | DUCTION | | | | | | Put to D. | nducina | May 10 | 6 | | | | | | • | | | | | | | | 25.5 | 7 | | | | - 2 | | OIL WE | LL: The | production | during the first 2 | 4 ho | urs was 25 | · | b | arrels of li | quid of which | 5 3 | | | was o | oil; | % v | vas c | mulsion; | ••••• | % wat | er: and | | % was sediment | | | Gravi | ty. 1:0 | 0.5 | | | | | , | | , was standing | | | | | | | | | | | | | | GAS WE | LL: The p | production | during the first 2 | 4 ho | urs was | | M,C.F. | pl us | ••••••• | ba | | | liquid | Hydrocar | bon. Shut in Press | surc | | ibs. | | | | | | Length o | f Time Shu | t in | •••••• | | | | | | | | | | | | | | | | A | | | | | 1 440 | ADE HIDI | JAKE BE | Southeastern No | | | ONFORMAN | CE WIT | CH GEOG | | ECTION OF STA | | T. Anhy | | 15551 | | | Devonian | | | f r | | ern New Mexico | | T. Salt | | 16651 | | т. | Silurian | | | | | land | | | | 2 <u>7</u> 101 | | T. | Montoya | | | | | land | | | | 2月 11 | | T. | Simpson | | | | _ | | | T. 7 Riv | c rs | | | T. | | | | | | | | | - | 37051 | ····· | T. | Ellenburger | | | | | | | T. Graył | urg | | | T. | Gr. Wash | | | | | ****** | | T. San A | ndres | - 125 T | | T. | Granite | | | т. | | | | T. Glorie | | 53851
55761 | ••••••• | T. | *************************************** | | •••••• | т. | Morrison | | | | - | 1305 1 | | T. | | | | | Penn | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 7027 1 | ······································ | T. | •••••• | | | т. | •••••• | ••••••••••••••••••••••••••••••••••••••• | | T. Abo | | 22SE1 | ••••••••• | T. | *************************************** | | ······ | | *************************************** | | | T. P. nn. | | | | Т. | | ····· | | | *************************************** | *************************************** | | | n c | 998 71 | | ~~ | | | | | | | | | 1 9 | 9871 | | T. | | ON PECO | | Т. | *************************************** | | | | | | | Т. | | ON RECO | | | | | | r. Misk | To Ti | hickness
n Fect | | T. | FORMAT | | | Thicknes in Feet | | Formation | | From | To Ti | hickness
in Fect | aliche | | FORMAT | ON RECO | RD | Thicknes | | | | From 0 318 | To Ti | hickness
n Feet 318 C
922 R | aliche
edbed | natio | FORMAT | ON RECO | RD | Thicknes | | | | From 0 318 12.0 | To Ti | 318 0
922 R
329 R | aliche
edbed
edbed & Ank | natio | FORMAT | ON RECO | RD | Thicknes | | | | From 0 318 1240 1559 | To Ti
313
1240
1559
3930
4477 | hickness
n Feet 318 0 922 2 329 R 329 A 547 A | aliche
edbed
edbed & Arb
nhy
nhy & Dolom | natio
y | FORMATi | ON RECO | RD | Thicknes | | | | From 318 1240 1559 3930 | To Ti
313
1240
1559
3930
4477
5199 | 118 0
922 2
329 8
2371 A
547 A
722 D | aliche
edbed
edbed & Anh
nhy
nhy & Dolom
olomite & Sa | natio
y
ite | FORMATi | ON RECO | RD | Thicknes | | | | From 318 1240 1559 3930 1477 (199 | To Ti 313 1240 1559 3930 4477 5199 6245 | hickness
n Fect
318 0
922 R
319 R
2371 A
547 A
722 D
1016 D | aliche
edbed & Ark;
nhy & Dolom
olomite & S;
olomite & L; | natio
y
ite
and
ime | FORMATi | ON RECO | RD | Thicknes | | | | From Compared Com | To Ti 313 1240 1559 3930 4477 5199 6245 7380 8460 | hickness
n Fect 318 0 922 R 319 R 2371 A 547 A 722 D 1056 D 1135 D | aliche
edbed & Ark
nhy & Dolom
olomite & Sa
olomite & Li
olomite, Li | nation | FORMATi | ON RECO | RD | Thicknes | | | | From 318 120 1559 3930 1477 (199 6245 7360 8460 | To Ti
313
1240
1559
3930
4477
5199
6245
7380
8460
9360 | hickness
n Feet 318 0 922 2 329 R 2371 A 547 A 722 D 1016 D 1135 D 1030 D 1200 L | aliche edbed & Anh nhy nhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale | ite
and
ime
me (| FORMATi | ON RECO | RD | Thicknes | | | | From 318 1240 1559 3930 1477 199 6215 7380 8460 9660 | To Till 1240 1559 3930 4477 5199 6245 7380 8460 9560 9910 | 1016 D
1200 L
250 L | aliche dedbed & Anh nhy nhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale 8 | national interest into the control of o | FORMATi | ON RECO | RD | Thicknes | | | | From 318 120 1559 3930 1477 (199 6245 7360 8460 | To Till 1240 1559 3930 4477 5199 6245 7380 8460 9560 9910 | 1016 D
1200 L
250 L | aliche edbed & Anh nhy nhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale | national interest into the control of o | FORMATi | ON RECO | RD | Thicknes | | | | From 1559 3980 1240 1559 6245 7380 8460 9660 9910 1000 1 | To Till 1240 1559 3930 4477 5199 6245 7380 8460 9560 9910 | 1016 D
1200 L
250 L | aliche dedbed & Anh nhy nhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale 8 | national interest into the control of o | FORMATi | ON RECO | RD | Thicknes | | | | From 318 12.00 1539 3930 1477 1199 6249 7380 8460 9660 9910 | To Ti 313 1240 1559 3930 4477 5199 6245 7380 8460 9360 9910 40200 40200 | hickness n Fect 318 0 922 R 319 R 2371 A 547 A 722 D 1016 D 1135 D 1080 D 1200 L 250 L 250 L | aliche edbed & Ark; hhy hhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomi | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From 318 12.0 1559 3930 1477 1199 6245 7360 9460 9660 9910 | To Time 313 1240 1559 3930 4477 5199 6245 7380 8460 9560 9910 0200 0200 0200 | hickness
n Feet 318 0 922 R 319 R 2371 A 547 A 722 D 1016 D 1135 D 1080 D 1200 L 250 L | aliche dedbed & Anh nhy nhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale 8 | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From 318 12.0 1559 3930 1477 1199 6245 7360 9460 9660 9910 | To Ti 313 1240 1559 3930 4477 5199 6245 7380 8460 9360 9910 40200 40200 | hickness
n Feet 318 0 922 R 319 R 2371 A 547 A 722 D 1016 D 1135 D 1080 D 1200 L 250 L | aliche edbed & Ark; hhy hhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomi | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From 318 12.0 1559 3930 1477 1199 6245 7360 9460 9660 9910 | To Ti 313 1240 1559 3930 4477 5199 6245 7380 8460 9360 9910 102000 10200 | hickness
n Feet 318 0 922 R 319 R 2371 A 547 A 722 D 1016 D 1135 D 1080 D 1200 L 250 L | aliche edbed & Ark; hhy hhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomi | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From Signature Color | To Ti 313 1240 1559 3930 4477 5199 6245 7380 8460 9360 9910 102000 10200 | hickness n Feet 318 0 922 R 319 R 2371 A 547 A 722 D 105 D 135 D 1200 D 250 D 250 D | aliche edbed & Ark; hhy hhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomi | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From 18 1240 1559 3980 477 199 6245 7380 9460 9660 9910 1000 | To Time 313 1240 1559 3930 4477 5199 6245 7380 8460 9910 10200 102 | hickness n Fect 318 0 922 R 319 R 2371 A 547 A 1016 D 1135 D 1080 D 1200 L 250 L 250 L 250 L 250 L 8048 | aliche edbed edbed & Ark; nhy nhy & Dolom olomite & S; olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomit | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From 318 1240 1559 3930 1477 3930 5460 9660 9910 Toacur Nove Tota Nu | To Time 313 1240 1559 3930 4477 5199 6245 7380 8460 9910 10200 102 | hickness n Fect 318 0 922 R 319 R 2371 A 547 A 1016 D 1135 D 1080 D 1200 L 250 L 250 L 250 L 250 L 8048 | aliche edbed & Ark; hhy hhy & Dolom olomite & So olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomi | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From 318 12.0 1559 3930 1477 199 6215 7380 9460 9660 9910 Teasur | To Time 313 1240 1559 3930 4477 5199 6245 7380 8460 9910 10200 102 | hickness n Fect 318 0 922 R 319 R 2371 A 547 A 1016 D 1135 D 1080 D 1200 L 250 L 250 L 250 L 250 L 8048 | aliche edbed edbed & Ark; nhy nhy & Dolom olomite & S; olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomit | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | From 318 1240 1559 3930 1477 3930 5460 9660 9910 Toacur Nove Tota Nu | To Time 313 1240 1559 3930 4477 5199 6245 7380 8460 9910 10200 102 | hickness n Fect 318 0 922 R 319 R 2371 A 547 A 1016 D 1135 D 1080 D 1200 L 250 L 250 L 250 L 250 L 8048 | aliche edbed edbed & Ark; nhy nhy & Dolom olomite & S; olomite & Li olomite & Si ine & Shale ime, Shale & ime, Dolomit | ite
and
ime
me (
hal | FORMATi | ON RECO | RD | Thicknes | | | | I hereby swear or affirm that the information given herewith is a | complete and correct record of th | ne well and all work done on it so fai | |---|-----------------------------------|--| | as can be determined from available records. | | | | | H. D. Raymond | June 2, 1964. | | Company or Operator. TIMAGE Inc. | Address 2.0.20x 728 | (Date)
- Hobbs, Nov Exico | | Name 1 1 1 1 2 Paymond | | District Superintends at |