NEW MEXICO OIL CONSERVATION COMMISSION OFFICE OCC

Form C-122 Revised 12-1-55

MULTI-POINT BACK PRESSURE TEST FOR GAS NEIAS 10: 32

-												
lnit	tial	 	Annu	al		Spe	cial	X	Date of	Test 8-	20 to 24 -	
Comp	oany Ame	rada Pe	troloum	Corp	oration	_Lease_	L.W. W	nite	Wei	ll No.	1	
Jnit	, P	Sec.	34 Tw	p 2 ()S Re	ze. 36-	E Dun	shacon E	L Paso Nat			
									5881			
									41			
as	Pay: Fro	om_35881	То	36281	L3	5881	xG_0.670		2404	Bar.Pre	ss <u>13.2</u>	
ate	of Compl	letion•	7-6-5	i.	On also		Si	ngle-Brad	ell G enhead-G.	G. or G	.O. Dual	
				<u> </u>	acke	214	3.	Reserv	ennead-G. oir Temp	89*		
							ED DATA					
este	ed Throug	gh (to	PROCESS	DOMO	(Meter)				Type Tap	s_ F1	Ange	
			Flow Da	ta			Tubing	g Data	Casing D	ata		
	(Prover (Line)	(Ch	oke) fice)	Press	Diff.	Temp.		Temp.	Press.			
	Size		' 1	psig	h _w	$\circ_{\mathrm{F}_{ullet}}$	psig	°F.	psig	o _F .	of Fl Hr.	
I								<u> </u>	836		72	
\mp	<u> </u>		500 500	577 565	7.9 ² 6.2 ²				688		24,	
	AN.		500	573	4.6	90		 	672 677		24	
+	4"	1.	500	560	3.12	95			702		24	
1	(24-Ho	(מנוס			psia	ਹ ਸ		F	1.056		@ 15.025 ps	
+	13.99	our y	191.9		90.2	0,970	6	0.9463	1.05	6	2604	
+					90.2 78.2 86.2	0.970 0.963	6	0.9463 #	1.05	6	2604 1918	
	13.99		191.9		78.2	0,970	6 3	0.9463	1.05	6 2 6	2604	
Lio /ity	13.99 13.99 13.99	rocarbon lid Hydr	191.9 142.9 111.4 74.2 Ratio	ns	90.2 576.2 586.2 573.2	0.970 0.963 0.972 0.968 CSSURE CA	ALCUIATIO	O.9463 N N ONS Speci	1.05	y Separ	2604 1918 1514 1002	
Lic	13.99 13.99 13.99 quid Hydr y of Liqu 1.134	rocarbon uid Hydr Pt	191.9 142.9 111.4 74.2 Ratio ocarbon (1-	ns_e-s)	90.2 578.2 586.2 573.2 PRE 0.152	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg.	ALCUIATIO	O.9463 W N ONS Speci Speci Pc_8	fic Gravit fic Gravit fic Gravit	y Separ y Flowi Pc Cal	2604 1918 1514 1002 Pator Gas ng Fluid 121.0	
Lic	13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134	rocarbon aid Hydr	191.9 142.9 111.4 74.2 Ratio ocarbon (1-	ns e-s)	90.2 578.2 586.2 573.2 PRE (F _c Q) ² 8.70	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg.	(Q) ² e-s)	0.9463 W N ONS Speci Pc_ 8	1.05 1.05 1.05 1.05 fic Gravit fic Gravit 49.2	y Separ y Flowi P ² Cal P _w	2604 1912 1514 1002 eator Gas ng Fluid /21.0	
Lic	13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 690.2	Pt	Ratio ocarbon (1-	95 18	90.2 576.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg.	Q) ² -e-s) 32 72	0.9463 W N N ONS Speci Speci P _C 8	fic Gravit fic Gravit fic Gravit	y Separ y Flowi P ² Cal P _w 491.9	2604 1912 1514 1002 eator Gas ng Fluid 21.0	
Lic vity	13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134	rocarbon aid Hydr	Ratio ocarbon (1-	ns -e-s)	99.2 578.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg.	Q) ² -e-s) 32 72	0.9463 W N N ONS Speci Speci P _C 8	1.05 1.05 1.05 1.05 fic Gravit fic Gravit 49.2	Cal Pw 491.9 469.7	2604 1918 1514 1002 eator Gas ng Fluid /21.0	
Lic	13.99 13.99 13.99 13.99 quid Hydr y of Lique 1.134 Pw Pt (psia) 701.2 685.2 685.2 715.2	Pt 491.7	Ratio ocarbon (1-	95 18 72	90.2 578.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg.	(Q) ² -e ^{-s})	O.9463 W N ONS Speci Pc_8 Pw2 493.02 470.22 476.65 511.70	1.05 1.05 1.05 1.05 fic Gravit fic Gravit 49.2 P _c -P _w ² 228 260.78 244.15 209.30	Cal Pw 491.9 469.7	2604 1918 1514 1002 eator Gas ng Fluid 721.0	
Lic	13.99 13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 685.2 15.2	Pt 491.7	191.9 142.9 111.4 74.2 Ratio ocarbon (1-	95 18 72	90.2 578.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg. (Fo (1-	(Q) ² -e ^{-s}) 32 72 45	0.9463 W N N ONS Speci Speci P _C 8	1.05 1.05 1.05 1.05 fic Gravit fic Gravit 49.2 P _c -P _w ² 228 260.78 244.15 209.30	Cal Pw 491.9 469.7	2604 1918 1514 1002 eator Gas ng Fluid 721.0	
Lic vity F F F Solu (PAN) PRES	13.99 13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 685.2 715.2 nte Potenty SS and TITL	Pt A91.7 A69.5 tial: Amered	Ratio ocarbon (1-	95 18 72	90.2 578.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg. (Fo (1-	(Q) ² -e ^{-s}) 32 72 45	O.9463 W N ONS Speci Pc_8 Pw2 493.02 470.22 476.65 511.70	1.05 1.05 1.05 1.05 fic Gravit fic Gravit 49.2 P _c -P _w ² 228 260.78 244.15 209.30	Cal Pw 491.9 469.7	2604 1918 1514 1002 eator Gas ng Fluid 721.0	
Lic vity F B Solu PAN PRES CNT	13.99 13.99 13.99 13.99 13.99 quid Hydr y of Lique 1.134 Pw Pt (psia) 701.2 685.2 690.2 715.2 ate Potenting SSED	Pt 491.7 469.3 476.4 511.5 tial: Amered E W.G.	Ratio ocarbon (1- FcQ 2. 2. 2. 3. 4.2 Ratio ocarbon (1- FcQ Abbett	95 18 72	90.2 578.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30 Corporate t. New M	0.970 0.963 0.972 0.968 CSSURE CA cf/bbl. deg. (Fo (1-	(Q) ² -e ^{-s}) 32 72 45	O.9463 W N ONS Speci Pc_8 Pw2 493.02 470.22 476.65 511.70	1.05 1.05 1.05 1.05 fic Gravit fic Gravit 49.2 P _c -P _w ² 228 260.78 244.15 209.30	Cal Pw 491.9 469.7	2604 1918 1514 1002 eator Gas ng Fluid 721.0	
Lic vity F F F F F F F F F F F F F F F F F F F	13.99 13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 685.2 715.2 nte Potenty SS and TITL	Pt 491.7 469.3 476.4 511.5 tial: Amered E W.G.	Ratio ocarbon (1-	95 18 72	90.2 578.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30 Corporate t. New M	O.970 O.963 O.972 O.968 CSSURE CA cf/bbl. deg. (Fo (1-	Q) ² e-s) 32 72 45	O.9463 W N ONS Speci Pc_8 Pw2 493.02 470.22 476.65 511.70	1.05 1.05 1.05 1.05 fic Gravit fic Gravit 49.2 P _c -P _w ² 228 260.78 244.15 209.30	Cal Pw 491.9 469.7	2604 1918 1514 1002 eator Gas ng Fluid 721.0	
SoluMPAN TI	13.99 13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 685.2 715.2 ate Potentia SSED TY the slope	Pt A91.7 A69.5 A76.4 511.5 tial: Amered Drawer E W.G.	Ratio ocarbon (1- Ratio ocarbon (1- FcQ 2. 1. 8250 Abbett aso Nat	.95 .18 .72 .14	90.2 576.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30 Corporat t. New M	O.970 O.963 O.972 O.968 CSSURE CA cf/bbl. deg. (Fo (1- 1.) MCFPD; iexice REMA as this	Q) ² -e-s) 32 72 -5 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	0.9463 W N ONS Speci Speci Pc_8 Pw2 473.02 470.22 476.85 511.70 (Assumed)	1.05 1.05 1.05 1.05 1.05 fic Gravit 49.2 P _c -P _w ² 228 260.78 244.15 209.30	Call Pw 491.9 469.7 476.5	2604 1918 1514 1002 eator Gas ng Fluid /21.0	
Lic Vity F F F Solu (PAN) PRES CNT 'NES (PAN)	13.99 13.99 13.99 13.99 13.99 Quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 685.2 115.2 ate Potentix SSED SY	Pt A91.7 A69.5 A76.4 511.5 tial: Amered Drawer E W.G.	Ratio ocarbon (1- Ratio ocarbon (1- FcQ 2. 1. 8250 Abbett aso Nat	.95 .18 .72 .14	90.2 576.2 586.2 573.2 PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30 Corporat t. New M	O.970 O.963 O.972 O.968 CSSURE CA cf/bbl. deg. (Fo (1- 1.) MCFPD; iexice REMA as this	Q) ² -e-s) 32 72 -5 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	0.9463 W N ONS Speci Speci Pc_8 Pw2 473.02 470.22 476.85 511.70 (Assumed)	1.05 1.05 1.05 1.05 1.05 fic Gravit 49.2 P _c -P _w ² 228 260.78 244.15 209.30	Call Pw 491.9 469.7 476.5	2604 1918 1514 1002 eator Gas ng Fluid 721.0	

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure ($P_{\rm W}$). MCF/da. @ 15.025 psia and 60° F.
- Pc= 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- PwT Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- Fg Gravity correction factor.
- Ft Flowing temperature correction factor.
- F_{py} Supercompressability factor.
- n _ Slope of back pressure curve.

Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.