NEW MEXICO OIL CONSERVATION COMMISSION OFFICE OCC Form C-122 Revised 12-1-55 MULTI-POINT BACK PRESSURE TEST FOR GAS NEIAS 10: 32 | - | | | | | | | | | | | | | |--|--|---|--|--------------------------|---|--|---|---|--|--|--|--| | lnit | tial | | Annu | al | | Spe | cial | X | Date of | Test 8- | 20 to 24 - | | | Comp | oany Ame | rada Pe | troloum | Corp | oration | _Lease_ | L.W. W | nite | Wei | ll No. | 1 | | | Jnit | , P | Sec. | 34 Tw | p 2 (|)S Re | ze. 36- | E Dun | shacon E | L Paso Nat | 5881 | | | | | | | | | | | | | | 41 | | | | | as | Pay: Fro | om_35881 | То | 36281 | L3 | 5881 | xG_0.670 | | 2404 | Bar.Pre | ss <u>13.2</u> | | | | | | | | | | | | | | | | | ate | of Compl | letion• | 7-6-5 | i. | On also | | Si | ngle-Brad | ell G
enhead-G. | G. or G | .O. Dual | | | | | | | <u> </u> | acke | 214 | 3. | Reserv | ennead-G.
oir Temp | 89* | | | | | | | | | | | ED DATA | | | | | | | este | ed Throug | gh (to | PROCESS | DOMO | (Meter) | | | | Type Tap | s_ F1 | Ange | | | | | | Flow Da | ta | | | Tubing | g Data | Casing D | ata | | | | | (Prover
(Line) | (Ch | oke)
fice) | Press | Diff. | Temp. | | Temp. | Press. | | | | | | Size | | ' 1 | psig | h _w | $\circ_{\mathrm{F}_{ullet}}$ | psig | °F. | psig | o _F . | of Fl
Hr. | | | I | | | | | | | | <u> </u> | 836 | | 72 | | | \mp | <u> </u> | | 500
500 | 577
565 | 7.9 ²
6.2 ² | | | | 688 | | 24, | | | | AN. | | 500 | 573 | 4.6 | 90 | | | 672
677 | | 24 | | | + | 4" | 1. | 500 | 560 | 3.12 | 95 | | | 702 | | 24 | | | 1 | (24-Ho | (מנוס | | | psia | ਹ
ਸ | | F | 1.056 | | @ 15.025 ps | | | + | 13.99 | our y | 191.9 | | 90.2 | 0,970 | 6 | 0.9463 | 1.05 | 6 | 2604 | | | + | | | | | 90.2
78.2
86.2 | 0.970
0.963 | 6 | 0.9463
| 1.05 | 6 | 2604
1918 | | | | 13.99 | | 191.9 | | 78.2 | 0,970 | 6 3 | 0.9463 | 1.05 | 6 2 6 | 2604 | | | Lio
/ity | 13.99
13.99
13.99 | rocarbon
lid Hydr | 191.9
142.9
111.4
74.2
Ratio | ns | 90.2
576.2
586.2
573.2 | 0.970
0.963
0.972
0.968
CSSURE CA | ALCUIATIO | O.9463 N N ONS Speci | 1.05 | y Separ | 2604
1918
1514
1002 | | | Lic | 13.99
13.99
13.99
quid Hydr
y of Liqu
1.134 | rocarbon
uid Hydr
Pt | 191.9
142.9
111.4
74.2
Ratio
ocarbon
(1- | ns_e-s) | 90.2
578.2
586.2
573.2
PRE
0.152 | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg. | ALCUIATIO | O.9463 W N ONS Speci Speci Pc_8 | fic Gravit
fic Gravit
fic Gravit | y Separ
y Flowi
Pc Cal | 2604
1918
1514
1002
Pator Gas
ng Fluid
121.0 | | | Lic | 13.99
13.99
13.99
13.99
quid Hydr
y of Liqu
1.134 | rocarbon
aid Hydr | 191.9
142.9
111.4
74.2
Ratio
ocarbon
(1- | ns
e-s) | 90.2
578.2
586.2
573.2
PRE
(F _c Q) ²
8.70 | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg. | (Q) ²
e-s) | 0.9463
W
N
ONS
Speci
Pc_ 8 | 1.05
1.05
1.05
1.05
fic Gravit
fic Gravit
49.2 | y Separ
y Flowi
P ²
Cal
P _w | 2604
1912
1514
1002
eator Gas
ng Fluid
/21.0 | | | Lic | 13.99
13.99
13.99
13.99
quid Hydr
y of Liqu
1.134
Pw
Pt (psia)
701.2
685.2
690.2 | Pt | Ratio ocarbon (1- | 95
18 | 90.2
576.2
586.2
573.2
PRE
0.152
(F _c Q) ²
8.70
4.75
2.96 | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg. | Q) ² -e-s) 32 72 | 0.9463
W
N
N
ONS
Speci
Speci
P _C 8 | fic Gravit
fic Gravit
fic Gravit | y Separ
y Flowi
P ²
Cal
P _w
491.9 | 2604
1912
1514
1002
eator Gas
ng Fluid
21.0 | | | Lic
vity | 13.99
13.99
13.99
13.99
quid Hydr
y of Liqu
1.134 | rocarbon
aid Hydr | Ratio ocarbon (1- | ns
-e-s) | 99.2
578.2
586.2
573.2
PRE
0.152
(F _c Q) ²
8.70
4.75 | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg. | Q) ² -e-s) 32 72 | 0.9463
W
N
N
ONS
Speci
Speci
P _C 8 | 1.05
1.05
1.05
1.05
fic Gravit
fic Gravit
49.2 | Cal
Pw
491.9
469.7 | 2604
1918
1514
1002
eator Gas
ng Fluid
/21.0 | | | Lic | 13.99
13.99
13.99
13.99
quid Hydr
y of Lique
1.134
Pw
Pt (psia)
701.2
685.2
685.2
715.2 | Pt 491.7 | Ratio ocarbon (1- | 95
18
72 | 90.2
578.2
586.2
573.2
PRE
0.152
(F _c Q) ²
8.70
4.75
2.96
1.30 | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg. | (Q) ²
-e ^{-s}) | O.9463
W
N
ONS
Speci
Pc_8
Pw2
493.02
470.22
476.65
511.70 | 1.05
1.05
1.05
1.05
fic Gravit
fic Gravit
49.2
P _c -P _w ²
228
260.78
244.15
209.30 | Cal
Pw
491.9
469.7 | 2604
1918
1514
1002
eator Gas
ng Fluid
721.0 | | | Lic | 13.99
13.99
13.99
13.99
13.99
quid Hydr
y of Liqu
1.134
Pw
Pt (psia)
701.2
685.2
685.2
15.2 | Pt 491.7 | 191.9 142.9 111.4 74.2 Ratio ocarbon (1- | 95
18
72 | 90.2
578.2
586.2
573.2
PRE
0.152
(F _c Q) ²
8.70
4.75
2.96
1.30 | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg.
(Fo
(1- | (Q) ² -e ^{-s}) 32 72 45 | 0.9463
W
N
N
ONS
Speci
Speci
P _C 8 | 1.05
1.05
1.05
1.05
fic Gravit
fic Gravit
49.2
P _c -P _w ²
228
260.78
244.15
209.30 | Cal
Pw
491.9
469.7 | 2604
1918
1514
1002
eator Gas
ng Fluid
721.0 | | | Lic
vity
F
F
F
Solu
(PAN)
PRES | 13.99
13.99
13.99
13.99
13.99
quid Hydr
y of Liqu
1.134
Pw
Pt (psia)
701.2
685.2
685.2
715.2
nte Potenty
SS
and TITL | Pt A91.7 A69.5 tial: Amered | Ratio ocarbon (1- | 95
18
72 | 90.2
578.2
586.2
573.2
PRE
0.152
(F _c Q) ²
8.70
4.75
2.96
1.30 | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg.
(Fo
(1- | (Q) ² -e ^{-s}) 32 72 45 | O.9463
W
N
ONS
Speci
Pc_8
Pw2
493.02
470.22
476.65
511.70 | 1.05
1.05
1.05
1.05
fic Gravit
fic Gravit
49.2
P _c -P _w ²
228
260.78
244.15
209.30 | Cal
Pw
491.9
469.7 | 2604
1918
1514
1002
eator Gas
ng Fluid
721.0 | | | Lic
vity
F
B
Solu
PAN
PRES
CNT | 13.99
13.99
13.99
13.99
13.99
quid Hydr
y of Lique
1.134
Pw
Pt (psia)
701.2
685.2
690.2
715.2
ate Potenting
SSED | Pt 491.7 469.3 476.4 511.5 tial: Amered E W.G. | Ratio ocarbon (1- FcQ 2. 2. 2. 3. 4.2 Ratio ocarbon (1- FcQ Abbett | 95
18
72 | 90.2
578.2
586.2
573.2
PRE
0.152
(F _c Q) ²
8.70
4.75
2.96
1.30
Corporate
t. New M | 0.970
0.963
0.972
0.968
CSSURE CA
cf/bbl.
deg.
(Fo
(1- | (Q) ² -e ^{-s}) 32 72 45 | O.9463
W
N
ONS
Speci
Pc_8
Pw2
493.02
470.22
476.65
511.70 | 1.05
1.05
1.05
1.05
fic Gravit
fic Gravit
49.2
P _c -P _w ²
228
260.78
244.15
209.30 | Cal
Pw
491.9
469.7 | 2604
1918
1514
1002
eator Gas
ng Fluid
721.0 | | | Lic
vity
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F | 13.99
13.99
13.99
13.99
13.99
quid Hydr
y of Liqu
1.134
Pw
Pt (psia)
701.2
685.2
685.2
715.2
nte Potenty
SS
and TITL | Pt 491.7 469.3 476.4 511.5 tial: Amered E W.G. | Ratio ocarbon (1- | 95
18
72 | 90.2
578.2
586.2
573.2
PRE
0.152
(F _c Q) ²
8.70
4.75
2.96
1.30
Corporate
t. New M | O.970 O.963 O.972 O.968 CSSURE CA cf/bbl. deg. (Fo (1- | Q) ² e-s) 32 72 45 | O.9463
W
N
ONS
Speci
Pc_8
Pw2
493.02
470.22
476.65
511.70 | 1.05
1.05
1.05
1.05
fic Gravit
fic Gravit
49.2
P _c -P _w ²
228
260.78
244.15
209.30 | Cal
Pw
491.9
469.7 | 2604
1918
1514
1002
eator Gas
ng Fluid
721.0 | | | SoluMPAN TI | 13.99 13.99 13.99 13.99 13.99 quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 685.2 715.2 ate Potentia SSED TY the slope | Pt A91.7 A69.5 A76.4 511.5 tial: Amered Drawer E W.G. | Ratio ocarbon (1- Ratio ocarbon (1- FcQ 2. 1. 8250 Abbett aso Nat | .95
.18
.72
.14 | 90.2
576.2
586.2
573.2
PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30 Corporat t. New M | O.970 O.963 O.972 O.968 CSSURE CA cf/bbl. deg. (Fo (1- 1.) MCFPD; iexice REMA as this | Q) ² -e-s) 32 72 -5 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 | 0.9463
W N ONS Speci Speci Pc_8 Pw2 473.02 470.22 476.85 511.70 (Assumed) | 1.05
1.05
1.05
1.05
1.05
fic Gravit
49.2
P _c -P _w ²
228
260.78
244.15
209.30 | Call Pw 491.9 469.7 476.5 | 2604
1918
1514
1002
eator Gas
ng Fluid
/21.0 | | | Lic
Vity
F
F
F
Solu
(PAN)
PRES
CNT
'NES
(PAN) | 13.99 13.99 13.99 13.99 13.99 Quid Hydr y of Liqu 1.134 Pw Pt (psia) 701.2 685.2 685.2 115.2 ate Potentix SSED SY | Pt A91.7 A69.5 A76.4 511.5 tial: Amered Drawer E W.G. | Ratio ocarbon (1- Ratio ocarbon (1- FcQ 2. 1. 8250 Abbett aso Nat | .95
.18
.72
.14 | 90.2
576.2
586.2
573.2
PRE 0.152 (F _c Q) ² 8.70 4.75 2.96 1.30 Corporat t. New M | O.970 O.963 O.972 O.968 CSSURE CA cf/bbl. deg. (Fo (1- 1.) MCFPD; iexice REMA as this | Q) ² -e-s) 32 72 -5 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 | 0.9463
W N ONS Speci Speci Pc_8 Pw2 473.02 470.22 476.85 511.70 (Assumed) | 1.05
1.05
1.05
1.05
1.05
fic Gravit
49.2
P _c -P _w ²
228
260.78
244.15
209.30 | Call Pw 491.9 469.7 476.5 | 2604
1918
1514
1002
eator Gas
ng Fluid
721.0 | | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q = Actual rate of flow at end of flow period at W. H. working pressure ($P_{\rm W}$). MCF/da. @ 15.025 psia and 60° F. - Pc= 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - PwT Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - Ft Flowing temperature correction factor. - F_{py} Supercompressability factor. - n _ Slope of back pressure curve. Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.