NEW MEXICO OIL CONSERVATION COMMISSION

-

ż

- . -

Provide Person Data County Lea initial X Annual Special Date of Test 6/17/56 pmpany Skelly Cil Co. Lease Merico HT Well No. 1 initial X Special Date of Test 6/17/56 Partico HT Well No. 1 initial X Sec. 25 Twp. 198 Rge. 372 Purchaser Merthers Herthers Herth								; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		Re	Form C-1 evised 12-1-
Annual Special Date of Test 6/17/26 mmpany Skelly Cdl Co. Lease Merian TT Well No. 1 MitHSec20 Thys108 Rge372 Purchaser Merkhern Exturpl Cas Co. asing 54 MitHSec20 Thys108 Rge372 Purchaser Merkhern Exturpl Cas Co. asing 54 MitHSoc20 Toy_108 Rge372 Purchaser Merkhern Exturpl Cas Co. asing 54 Asing 2-3/6* Wit14_1D. 15.012 Set at 3652 Perf3(200) To	200	1 Semont									
Septir Cil Co. Lease Merica ere Well No. I nit											
ht Sec											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
		_									
as Pay: Prom 3500 to 3624 L 3629 xG 0.679 -GL 2644 Bar.Press. 13.2 roducing Thru: CasingTubing _ Type Well Single-Bradenhead-G, G. or G.O. Dual Reservoir Temp COESERVED DATA sated Through GENERIC (Dieter) Type Taps Plow DataTubing Data Casing Data (Choke) Press. Diff. Temp. Press. Temp Citing) (Crifice) Press. Diff. Temp. Press. Temp Size Size Size Size Size Size Prover) Choke Size Size Size Size Prover) Choke Size											
roducing Thru: Casing Tubing Tubing Type Well Single Tradenhead-G. G. or G.O. Dual Reservoir Temp											
Reservoir Temp. OBSERVED DATA OBSERVED DATA Sted Through (FILEET) (DODGET) (Veter) Type Taps											
DESERVED DATA Type Taps Type Taps Pipe Flow Data Tubing Data Casing Data <t< td=""><td>roc ate</td><td>lucing Thru:</td><td>: Casing</td><td>5/51</td><td>Tu</td><td>ibing</td><td>XSin</td><td>Type We gle-Brade</td><td>ell <u>Sing</u> enhead-G.</td><td>1. G. or G.(</td><td>). Dual</td></t<>	roc ate	lucing Thru:	: Casing	5/51	Tu	ibing	XSin	Type We gle-Brade	ell <u>Sing</u> enhead-G.	1. G. or G.(). Dual
sted Through (Integer) (Meter) Type Taps Flow Data (Drover) (Choice) Press. Diff. Temp. Press. Temp. Press. Temp. (Line) (Orifice) Size psig hw Or. psig Or	~ • •	, or compro-		<u>n – – – – – – – – – – – – – – – – – – –</u>	acke				TI Temp.		<u></u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	∍st	ed Through	(1771-0277)		(Meter)		ED DATA		Туре Тар	5 P	99
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Tubing	Data	Casing D)ata	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$,.	(Line)	(Orifice			- · · · ·	Press.		Press.		
At 2.00 A1.6 0.3 50 A70.5 A30.5 71 A30.7 21 T A30.7 T B05.7 21 21 21 T A30.8 54 72 23.4 21 T A30.8 54 72 23.4 T A30.8 54 72 24 T A30.8 54 72 24 T A30.8 54 72 24 T A30.8 54 73.4 43.4 24 T Pressure Flow Temp. Gravity Compress. Rate of Flow (24-Hour) $\sqrt{h_w p_f}$ psia Ft Fg Factor Factor Patro Q-MCPD (24-Hour) $\sqrt{h_w p_f}$ psia Ft Fg Pov 0 10.56 1972 29.92 6.57.6 A45.0 1.0039 0.9400 1.054 3755 Pressure ch(U) ATIONS Liquid Hydrocarbon Ratio cf/bl. Specific Gravity Separator Gas	+	Size	Size	psig	hw	°F.	<u> </u>	F.	psig		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		<u></u>					879.5	<u></u>			
FLOW CALCULATIONS FLOW Calculations Pressure Flow Temp. Gravity Compress. Rate of Flow (24-Hour) $\sqrt{h_w P_f}$ psia Factor Factor Factor Factor Factor Q-MCFPD (24-Hour) $\sqrt{h_w P_f}$ psia Ft Fg Factor Factor Q-MCFPD (24-Hour) $\sqrt{h_w P_f}$ psia 0.9400 1.056 1972 (24-Hour) $\sqrt{h_w P_f}$ psia 0.9636 0.9400 1.056 1972 (24-Hour) $\sqrt{h_w P_f}$ psia 0.9636 0.9400 1.056 1972 (24-Hour) $\sqrt{h_w P_f}$ psia 0.9636 0.9400 1.056 1973 (24-Hour) $\sqrt{h_w P_f}$ psia cf/bl. specific Gravity Separator Gas psia 1975	╉		+					+		╉────┼─	24
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1		· · · · · · · · · · · · · · · · · · ·				660.7	†		<u>+</u> +	-24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>		L					L	L	<u></u>	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т	Coeffici	ent	P		essure Flow Temp. Gra			· ·		
29,92 65.76 465.0 1.0098 0.9400 1.056 1972 * 110.30 470.7 1.0039 0.9400 1.043 3733 * 126.44 471.6 1.0019 0.9400 1.054 3360 * 126.44 471.6 1.0019 0.9400 1.054 3360 * 126.44 471.6 1.0019 0.9400 1.054 3755 PRESSURE CALCU'ATIONS Pressure calculations deg. Specific Gravity Separator Gas 3755 Liquid Hydrocarbon Ratio cf/pt Pt Pc 90.90.7 Pc 981.5 x 103 Mix pt Pt Pt Pc 90.97 Pc 981.5 x 103 Mix pt Pt Pt Pc 990.7 Pc 991.5 x 103 Mix pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt <	•	(24-Hou	$(\mathbf{r}) _{-\sqrt{1}}$	n _w p _f	psia						
n 126.44 471.6 1.0019 0.9400 1.054 3755 PRESSURE CALCU'ATIONS Liquid Hydrocarbon Ratio	Ţ	29,92	6	5.76				0.9400			
n 126.44 471.6 1.0019 0.9400 1.054 3755 PRESSURE CALCU'ATIONS Liquid Hydrocarbon Ratio							·			048	2733
PRESSURE CALCU'ATIONS Liquid Hydrocarbon Ratio cf/bbl. Specific Gravity Separator Gas vity of Liquid Hydrocarbons	╋		17/		#f¥#f+					054	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					472.6	1.0019		0.9400	l	054	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L	iquid Hydro ty of Liqui	carbon Rat	tio	PRI	ESSURE CA	ALCULATI	ONS Speci Speci	fic Gravi	ty Separa ty Flowin	3755 tor Gas
852.7 736.9 19.394 383.9 29.89 856.8 124.7 925.6 0.94 \$18.9 670.6 27.155 737.4 115.03 785.6 195.9 886.3 0.90 751.6 564.9 32.590 1062.1 165.69 730.6 250.9 856.7 0.87 673.9 4.54.1 37.310 1392.0 217.15 671.3 310.2 819.3 0.83 solute Potential: 8400 MCFPD; n_0.69897 MPANY	L	iquid Hydro ty of Liqui 36	carbon Rat	tio	PRI	ESSURE CA	ALCULATI	ONS Speci Speci	fic Gravi	ty Separa ty Flowin	3755 tor Gas
751.6 564.9 32.590 1062.1 165.69 730.6 250.9 854.7 0.87 673.9 4.54.1 37.310 1392.0 217.15 671.3 310.2 819.3 0.83 solute Potential: 8400 MCFPD; n 0.69897 MPANY Skelly Otl Ca. Diet. Supt. Diet. Supt. MORE MPANY Mone	vi	iquid Hydro ty of Liqui 36 Pt (psia)	Pt ² Pt ²	$F_{c}Q$	PRI 0.156 (F _c Q) ²	ESSURE CA	ALCULATIO	ONS Speci P _c _9 P _w 2	fic Gravit fic Gravit 99.7 P _c -P _w ²	ty Separa ty Flowin P ² 901. Cal. Pw	3755 tor Gas g Fluid 5 x 103
solute Potential: <u>8400</u> MCFPD; n <u>0.69897</u> MPANY <u>Skelly Oll Ca.</u> DRESS <u>Box 38. Nobber N. M.</u> ENT and TITLE A <u>Link</u> <u>Diet. Supt.</u> INESSED <u>None</u>	L vi	iquid Hydro ty of Liqui 36 Pt (psia) 892.7	Pt ² 796.9	6.44 tio	PRJ 0.156 (F _c Q) ² 383.9	ESSURE C. cf/bbl. deg. (F. (1- 59, 115	ALCU'ATI cQ) ² -e ^{-s}) .89	ONS Speci Pc_9 Pw2 856.8	fic Gravit fic Gravit 90.7 P ² _c -P ² _w 124.7	ty Separa ty Flowin P2 981. Cal. Pw 925.6	3755 tor Gas g Fluid 5 x 103 P _W P _C 0.94
MPANYSkelly Oil Co. DRESSBox 38. Hobber N. M. ENT and TITHE A Club Diet. Supt. INESSEDNone	L Vi Jug	iquid Hydro ty of Liqui 36 Pt (psia) 892.7 \$12.9 751.6	Pt 796.9 670-6 564.9	6.44 tio	PRJ 0.156 (F _c Q) ² 383.9 737.4 1062.1	ESSURE C. cf/bbl. deg. (F. (1	ALCU ¹ ATI(cQ) ² -e ^{-s}) -89	ONS Speci Pc P Pw ² 856.8 785.6 730.6	fic Gravi fic Gravi 90.7 P ² _c -P ² _w 124.7 195.9 250.9	ty Separa ty Flowin P ² 981. Cal. Pw 925.6 886.3 856.7	3755 tor Gas g Fluid 5 x 103 Pw Pc 0.94 0.90 0.87
ENT and TITLE A Club Dist. Supt.	L Vi vi	iquid Hydro ty of Liqui 36 Pt (psia) 892.7 \$12.9 751.6	Pt 796.9 670-6 564.9	6.44 tio	PRJ 0.156 (F _c Q) ² 383.9 737.4 1062.1	ESSURE C. cf/bbl. deg. (F. (1	ALCU ¹ ATI(cQ) ² -e ^{-s}) -89	ONS Speci Pc P Pw ² 856.8 785.6 730.6	fic Gravi fic Gravi 90.7 P ² _c -P ² _w 124.7 195.9 250.9	ty Separa ty Flowin P ² 981. Cal. Pw 925.6 886.3 856.7	3755 tor Gas g Fluid 5 x 103 Pw Pc 0.94 0.90 0.87
INESSED None		iquid Hydro ty of Liqui 36 Pt (psia) 892.7 \$18.9 751.6 673.9 lute Potent ANY	Pt Pt 12 Pt 12 Pt 12 Pt 12 12 Pt 12 12 12 12 12 12 12 12 12 12 12 12 12	F_cQ F_cQ 19.594 27.155 32.590 37.310 Co.	PRJ 0.156 (F _c Q) ² 383.9 737.4 1062.1 1392.0	ESSURE C. cf/bbl. deg. (F. (1 59, 115, 145, 217,	ALCU ¹ ATI cQ) ² -e ^{-s}) .89 .03 .69	ONS Speci P _c _9 P _w 2 856.8 785.6 730.6 671.3	fic Gravi fic Gravi 90.7 P ² _c -P ² _w 124.7 195.9 250.9	ty Separa ty Flowin P ² 981. Cal. Pw 925.6 886.3 856.7	3755 tor Gas g Fluid 5 x 103 Pw Pc 0.94 0.90 0.87
		iquid Hydro ty of Liqui 36 Pt (psia) 892.7 \$18.9 751.6 673.9 lute Potent ANY ESS	Pt Pt 796.9 670.6 564.9 454.1 ial: 8400 Scelly 011 Box. 38. Bo	F_cQ F_cQ 19.594 27.155 32.590 37.310 Co.	PRJ 0.156 (F _c Q) ² 383.9 737.4 1062.1 1392.0	ESSURE C. cf/bbl. deg. (F. (1 59, 115, 145, 217,	ALCU ATI cQ) ² -e ^{-s}) .03 .03 .03 .03 .03 .03 .03 .03	ONS Speci P _c _9 P _w 2 856.8 785.6 730.6 671.3	fic Gravi fic Gravi 90.7 P ² _c -P ² _w 124.7 195.9 250.9	ty Separa ty Flowin P ² 981. Cal. Pw 925.6 886.3 856.7	3755 tor Gas g Fluid 5 x 103 Pw Pc 0.94 0.90 0.87
		iquid Hydro ty of Liqui 36 Pt (psia) 892.7 \$18.9 751.6 673.9 lute Potent ANY ESS T and TITLE ESSED	P ² P ² P ² 12 P ² P ² 796.9 670.6 564.9 454.1 ial: 8400 Scelly 011 Box 38, 10	F_cQ F_cQ 19.594 27.155 32.590 37.310 Co.	PRJ 0.156 (F _c Q) ² 383.9 737.4 1062.1 1392.0	ESSURE C. cf/bbl. deg. (F. (1 59, 115, 145, 217,	ALCU ATI cQ) ² -e ^{-s}) .03 .03 .03 .03 .03 .03 .03 .03	ONS Speci P _c _9 P _w 2 856.8 785.6 730.6 671.3	fic Gravi fic Gravi 90.7 P _c -P _w ² 124.7 195.9 250.9	ty Separa ty Flowin P ² 981. Cal. Pw 925.6 886.3 856.7	3755 tor Gas g Fluid 5 x 103 Pw Pc 0.94 0.90 0.87

INSTRUCTIONS

1

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure (P_w) . MCF/da. @ 15.025 psia and 60° F.
- P_c= 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- P_w: Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- P_f Meter pressure, psia.

1.

- h_w Differential meter pressure, inches water.
- FgI Gravity correction factor.
- F_t Flowing temperature correction factor.
- F_{py}I Supercompressability factor.
- n I Slope of back pressure curve.
- Note: If P_W cannot be taken because of manner of completion or condition of well, then P_W must be calculated by adding the pressure drop due to friction within the flow string to P_+ .