Santa Fe, New Mexico WELL RECORD | LOCATE | | • | 11 MICH (+): | | | | | ROVED UNTIL | | |--|--|--|--|--|--|--|---|------------------------------------|---------------| | | EA 640 ACRE;
WELL CORR | ECTLY | | l Conservation Communication twenty days of Regulations 36 the Cartest Submit in Triplity IS PROPERTY FILL | | | • | | | | E. | B. Clar | k
ompany or Oper | 61 | 2 City Natio | onel B | uilding | Wichit
Address | a Falls, | Texas | | . W. C | Cooper | | Well No. | y/ in Uni | it B | of Sec. | 3 | , T. 20 | S | | 371 | a | I. M. P. M., | Momun | ent | Field | , <u> </u> | | ±ion 7 m | County. | | | 110 | | 1 Manually lime o | nd 1980 fe | eet west | of the East l | ine of | CIUM 7,1 | · er by the | | State la | and the oil a | and gas lease | e is No | Assig | nment N | 22455 A | Hobbs. | New Mexi | .c o | | patente | d land the | owner is | J. 11. COC | | 4 | , Address | | | | | | | | | | | Address | | | | | | | June | 16. | 19 3 Dri | illing wa | s completed | Augus | 18 | 19.44.2 | | me of d | drilling cont | ractor Byro | om Drilling | Company. | , Ad | dress Eun | ice, New | Mexico | | | evation | above sea le | evel at top of | f casing 3 | 563 <u> </u> | it.; | • | | 10 | -
- | | ne infor | mation give | n is to be ke | | until | | | | 10 | • | | | | | | oil sand s or : | - | | | | | | o. 1, fro | m 3857 | | to 3904 | No. 4 | from | | to | - | | | o. 2 , fro | m | | .to | No. 1 | i, from | | to | | | | o. 3, f ro | m | | _to | stit ;
No. 0 | 8, from | , e | to | - | | | | | | IMP | OBTANT WAT | ER SANI | DS | | | | | clude d | ata on rate | of water inf | low and elevati | on to which wat | er rose i | n hole. | | e-
 | . * | | o. 1, fro | om | | to | . <u>1</u> | | feet | | | <u>£</u> | | o. 2, fro |)m | | to | <u> </u> | | | | | | | o. 3, fro |)m | | to | | | feet | ······································ | :
 | | | | | | • | ં ite ક
<u>ાં મેલ્ડ્ર</u> | | feet | | | | | | | | | CASING REC | ORD | - | | | | | SIZE | WEIGHT | THREADS | | MOUNT KIND | | T & FILLED | FROM | ORATED
TO | PURPOSE | | | PER FOOT | PER INCH | | 3.5.2 T/2 | <u> </u> | - <u>[</u> | | <u> </u> | | | | | | | | -1- | - | | | | | | | - | | 5.128 | <u> </u> | | | | | | | | | | 3,71 | | | | | | | | | - | | ुंडिया व | | | | | | | | | 7 | MUDDE | G AND GENERA | FING P | RECORD | , | : | | | SIZE OF
HOLE | SIZE OF
CASING | WHERE SET | NO. SACKS | 5011 | 77 | MUD GRA | VITY | MOUNT OF | MUD ÜSED | | 11022 | 16" | 130' | 75 | Committed | 1 | Í | | . 1 | | | | 8 t | 1325
3675 | 200 o | 9 83°9
8439 | | | | | | | | D 3 | | | 1 235 | 7 | | J- | | | | | | | 1 | PLUGS AND AD |)APTER | S | • | .= | 4.275 Av. | | • • | plugMat | erial | | Length | 210 Y | | Depth Set | | | | ieaving | | | | Size | <u> </u> | | | ····· | | | | | | | g 1. | 5 55 | | | | | | | - Winterial | RI | ECORD OF SH | OOTING OR C | HEMICA | AL TREATM | ENT | | • | | Adapters | | E | TYPI OSIVE OR | OUANTITY | HEMICA
DA | _ DI | ENT
EPTH SHOT
TREATED | DEPTH CL | EANED OUT | | | | USED E | EXPLOSIVE OR IEMICAL USED | QUANTITY | HEMICA | _ DI | PTH SHOT | DEPTH CL | EANED OUT | | dapters | | USED E | TYPI OSIVE OR | QUANTITY | HEMICA | _ DI | PTH SHOT | DEPTH CL | EANED OUT | | Adapters
SIZE | SHELL | USED CH | EXPLOSIVE OR HEMICAL USED | QUANTITY | DA | TE OF | EPTH SHOF
TREATED | DEPTH CL | | | Adapters | SHELL | USED CH | EXPLOSIVE OR HEMICAL USED | QUANTITY | DA | TE OF | EPTH SHOF
TREATED | DEPTH CL | | | SIZE
Results | SHELL of shooting | USED CH
Ltt | EXPLOSIVE OR HEMICAL USED | QUANTITY C said | DA | TE OF | PTH SHOF
TREATED | day aft | | | SIZE
Results | SHELL of shooting | USED CH
Ltt | EXPLOSIVE OR HEMICAL USED | QUANTITY | DA | TE OF | PTH SHOF
TREATED | day aft | | | SIZE | SHELL, of shooting | USED CH | treatment No. | QUANTITY C said Il flowed at DRILL-STEM | DA DA TALE | of 75 be | TREATED TREATED TREATED | day aft | er treat | | SIZE | SHELL, of shooting | USED CH | treatment No. | QUANTITY C said | DA DA TALE | of 75 be | TREATED TREATED TREATED | day aft | er treat | | SIZE Results | of shooting | or chemical | treatment RECORD OF | QUANTITY QUANTITY C said Il flowed at DRILL-STEM A surveys were m TOOLS US | DA DA AND SPI nade, sub | of 75 bas | TREATED TREATED TO SEPARATE | day aft | er treat | | SIZE Results Rotary t | of shooting | or chemical er special tes | treatment RECORD OF | DRILL-STEM A surveys were m | DA DA AND SPI nade, sub | of 75 base | TREATED TREATED TREATED | day aft | er treat | | SIZE Results | of shooting | or chemical er special tes | treatment RECORD OF | DRILL-STEM A surveys were m | DA DA AND SPI nade, sub | of 75 base | TREATED TREATED TREATED | day aft | er treat | | SIZE Results f drill-s Rotary t | of shooting stem or other cools were used | or chemical er special tes | treatment RECORD OF sts or deviation | DRILL-STEM A surveys were m TOOLS US feet to F | DA DA DA DA TREE TREE TREE TREE TREE TREE TREE TRE | cf 75 ball | TREATED TREATED | sheet and a feet to feet to | attach hereto | | SIZE Results f drill-s Rotary t | of shooting stem or other cools were used | or chemical er special tes | treatment RECORD OF sts or deviation | DRILL-STEM A surveys were m TOOLS US feet to F | DA DA DA DA TREE TREE TREE TREE TREE TREE TREE TRE | cf 75 ball | TREATED TREATED | sheet and a feet to feet to | attach hereto | | SIZE Results f drill-s Rotary t Cable to | stem or other cools were used or oducing duction of the stem of the stem or other cools were used or oducing duction of the stem or other cools were used or oducing duction of the stem or other cools were used or oducing duction of the stem or other cools were used or oducing duction of the stem or other cools were used | or chemical or special tesused from sed from Sep he first 24 ho | treatment West or deviation | DRILL-STEM A surveys were m TOOLS US feet to 19 13 bar | DA DA DA DA TREE TREE TREE TREE TREE TREE TREE TRE | cf 75 ball | TREATED TREATED TO SEPARATE | sheet and a feet to | ttach hereto | | SIZE Results f drill-s Rotary t Cable to Put to p The pro- | stem or other cools were used to be desired using duction of time; | or chemical or chemical er special tes used from sed from sed from % water; | treatment RECORD OF sts or deviation Ours was and | DRILL-STEM A surveys were m TOOLS US feet to feet to 19 13 bar 75 sediment. | AND SPI made, sub SED feet, feet, fres of f | of 75 be | TREATED TREATED TO SEPARATE | sheet and a feet to feet to was of | ttach hereto | | SIZE Results Results Cable to Put to p The pro emulsion | stem or other cools were used or oducing duction of the cools, were used or oducing duction of the cools | or chemical or chemical er special tes used from sed from sed from water; per 24 hours | treatment RECORD OF sts or deviation Ours was and | DRILL-STEM A surveys were m TOOLS US feet to | AND SPI made, sub SED feet, feet, fres of f | of 75 be | TREATED TREATED TO SEPARATE | sheet and a feet to feet to was of | ttach hereto | | Results Cable to put t | stem or other cools were used or oducing duction of the cools, cu. ft. pressure, lbs. | or chemical or chemical er special tes used from sed from he first 24 hours per 24 hours per sq. in, | treatment West or deviation Course was and | DRILL-STEM A surveys were m TOOLS US feet to FRODUCT 19 13 bar % sediment. Ga | DA D | cf 75 barrent of the color t | TREATED TREATED TREATED TREATED TREATED TREATED TREATED TREATED TREATED | sheet and a feet to | ttach hereto | | SIZE Results Results Cable to Put to p The pro emulsion If gas w Rock pr | stem or other cools were used to the we | or chemical or chemical er special tes used from sed from sed from water; per 24 hours per sq. in | treatment RECORD OF sts or deviation ours was and | DRILL-STEM A surveys were m TOOLS US feet to | AND SPInade, subset of feet, feet, feet, floor gas | of 75 bases Collaboration of the colline per 1,0 | Trels per | sheet and a feet to | ttach hereto | | SIZE Results Results Cable to Put to p The pro emulsion If gas w Rock pr | stem or other cools were used to the we | or chemical or chemical er special tes used from sed from sed from water; per 24 hours per sq. in | treatment RECORD OF sts or deviation ours was and | DRILL-STEM A surveys were m TOOLS US feet to | AND SPInade, subset of feet, feet, feet, floor gas | of 75 bases Collaboration of the colline per 1,0 | Trels per | sheet and a feet to | ttach hereto | Subscribed and sworn to before me this..... day of September September ZERA BOUCHER Notary Public 7th , 19 43 Position Owner Representing ## FORMATION RECORD | FORMATION RECORD | | | | | | | | | |------------------------------|----------------------|------------------------|---|--|--|--|--|--| | FROM | то | THICKNESS
IN FEET | FORMATION | | | | | | | 0 | 10 | 10 | 1 ' | | | | | | | 10
20 | 20
25 | 10 5 | Caliche
Sand | | | | | | | 25 | 155 | 130 | | | | | | | | 155
180 | 180 | 25 | Purple Shale | | | | | | | 250 | 250
275 | 70
25 | Red Shale
Brown Shale | | | | | | | 275 | 295 | 20 | Red Shale | | | | | | | 295 | 335 | 40 | | | | | | | | 335
460 | 460 | 125 | Red Shale
Red Rock | | | | | | | 487 | 540 | 27
63 | Red Shale | | | | | | | 540
593 | 593
612 | 53
19 | Water Sand
Red Bed | | | | | | | 593
612 | 1020 | 408 | Red Shale | | | | | | | 1020
1043 | 1043
1065 | 23 | Water Sand | | | | | | | 1065 | 1073 | 22
8 | Red Shale
Sand | | | | | | | 1073 | 1080 | 7 | Sandy Red Shale | | | | | | | 1080
1090 | 1090
1119 | 10 | Sand
Sandy Red Shale | | | | | | | 1119 | 1152 | 19
33 | Red Sandy Shale | | | | | | | 1152
1178 | 1178 | 26 | Brown Shale | | | | | | | 1191 | 1200 | 13 | Sandy Shale
Sand (Nater) | | | | | | | 1200 | 1208 | 8 | Sand (Hard) | | | | | | | 12 03
1213 | 1213 | 5 | Blue Shale | | | | | | | 1323
1455 | 1323
1456 | 110 | Red Shale
Anhydrite | | | | | | | 1455
1465 | 1465 | 10 | Red Shale | | | | | | | 1489 | 1489
1525 | 원 ₁
36 | Anhydrite Red Shale | | | | | | | 1525 | 1530 | 9 | Anhydrite | | | | | | | 15 3 0 | 1539
1585 | | Salt | | | | | | | 1585 | 1,638 | 46
53 | Salt and Shale
Salt and Potash | | | | | | | 1638
1675 | 1675 | 37 | Anhydrite | | | | | | | 1690 | 1700 | 15
10 | Salt | | | | | | | 1700 | 1735 | 35 | Anhydrite
Salt and Shale | | | | | | | 1735
1747 | 1747
1840 | 12 | Anhydrite | | | | | | | 18b0 | 1850 | 93 | Salt
Red Shale | | | | | | | 1850
1870 | 1870
1899 | 20 | Salt and Shale | | | | | | | 1890 | 1923 | 20
33 | Salt and Potash
Salt and Shale | | | | | | | 1923
194 a | 1941 | 18 | Anjudrite and Potash | | | | | | | 2020 | 2020
2032 | 79
12 | Salt and Potash | | | | | | | 20 1 ;2 | 2032
2012 | 10 | Anhydrite
Salt and Shale | | | | | | | 2080 | 2080
2125 | 36 | Salt and Potash | | | | | | | 2125 | 517 ^t O | 45
15 | Salt and Shale Anhydrite | | | | | | | 5500
5170 | 2200
2215 | 15 | Salt | | | | | | | 2215 | 2284 | 15
69 | Salt and Potash | | | | | | | 228 <u>.</u>
2310 | 2310 | 26 | Anhydrite | | | | | | | 2360 | 2360
2455 | 50
95 | Salt | | | | | | | 21,55 | 2512 | 77
57 | Salt and Potash | | | | | | | 2512
2525 | 2525
2620 | 13 | Anhydrite and Shale | | | | | | | 26 39 | 2652 | 95
32 | Anhydrite
Brown Lime | | | | | | | 2652
2668 | 2668
2688 | 16 | Ankydrite | | | | | | | 2 68 8 | 2712 | 5/1
50 | Anhydrite and Shale | | | | | | | 2712
2716 | 2716 | 4 | Anhydrite
Sand (Yates) | | | | | | | 2723 | 2723
2770 | 7 | Anhydrite | | | | | | | 2670 | 2820 | 47
50 | Anhydrite, Shale and Sand
Brown Lime | | | | | | | 2820
28 3 3 | 2833 | 50
13 | Anhydrite | | | | | | | 2838 | 2838
2844 | 5 | Shale | | | | | | | 2844
2848 | 2848 | 4 | Anhydrite
Sand | | | | | | | 2960 : | 296 <u>1</u>
2960 | 12 | Lime, Anhydrite and Shale | | | | | | | 2964 | 3046 | 4
82 | Sand | | | | | | | 3046
3322 | 3322 | 276 | Lime and Anhydrite Anhydrite and Shale | | | | | | | 3519 | 3519
3558 | 197
39 | Lime and Anhydrite | | | | | | | 3558 | 3592 | 39 | Sand Lime and Shale | | | | | | | 3592
3600 | 3600
38 80 | 8 | Sand (Gas) | | | | | | | 3880 | 3893 | 280 _.
13 | Lime Dry Lime | | | | | | | 3893 | 38 99 | 6 | Lime - Saturated |