NEW MEXICO OIL CONSERVATION COMMISSION

					•		1997 - 1997 -			Form C-12	
							T FOR GAS			evised 12-1-5	
ool <u>bu</u>	mont			or cion	Yates	- Jeven	Rivers	50 County	Lea		
					SpecialDate of						
							tate Aggi				
							haser El				
							rf3 3 00				
				1.995 et at 3503							
										5. 13.2	
ate of Cc	moletion.	4-4-51			set.		Type We gle-Brade Reservo	nhead-G.	G. or G.(D. Dual	
130 01 00	mprecron:						Keservo	ir Temp	90	······································	
					OBSERV	TED DATA					
ested inr	ough 🧰			<u>(Mater)</u>				Type Tap	s Fla	nge	
(110		Flow Da	Press	Dif".	Temp.	Tubing Press.	Data Temp.	Casing D Press.	ata Temp.	Duration	
o. (Li	ne) (Or	ifice)								of Flow	
			psig	÷.,	- <u>+</u> •	ps1g 975	°F.	psig Facker		Hr . 72 SI	
. 4		1.500	579	15.21	59	889		0	┫━	24	
4		L.500	583 571	28.09	60	841		0		24	
4		1.500	562	71.40	62 62	798 701		0		<u>24</u> 28	
4											
				F	LOW CAL	CULATION	5				
CCA	fficient		P۱	ressure		Temp.	Gravity	Compre		te of Flow	
	4-Hour)	-V hwr) c	psia	Fac F	tor +	Factor Fg	Facto Fpv	1 1	-MCFPD 15.025 psia	
13	99	94.2 129.		592.2	1.0010			1.0		1336.2	
	3.99			596.2	1.0000		0.9463 0.9463	1.07		1830.1	
13	13.99 13 .99		87	584.2			0.9463	1.0		2199.7	
		202,	0<	575.2	0.998	L	0.9463	1.06	8	2859.4	
				FRE	SSURE C	ALCULATI	NS				
Liquid	ydrocarbo	on Ratic)		cf/bbl.			fic Gravi	ty Separa	tor Gas	
Liquid vity of	Hydrocarbo Liquid Hyd	on Ratic Procarbo	ons		cf/bbl.		Speci: Speci:	fic Gravi fic Gravi	ty_Flowin	g Fluid	
Liquid vity of	Hydrocarbo Liquid Hyd	on Ratic irocarbo (1	ons e = S <u>}</u>		cf/bbl.		Speci: Speci:		ty_Flowin		
Liquid vity of 1 9.936	Liquid Hyd	1rocarbo	ons	0.148	cf/bbl. deg.		Specif Specif ^P c	fic Gravi	ty Flowin _P ²	g Fluid	
Liquid vity of 1 9.936 • • •	Liquid Hyd	$\frac{1}{2}$	ons _e ^{_s} /	0.148 (F ₀ 2) ²	cf/bbl. deg. (F (1	c ^Q) ² -e ^{-s})	Specif Specif F _c P _w 2	fic Gravi 9 88-2 P _c ² -P _w ²	ty Flowin P ² Cal. Pw	g Fluid	
Liquid vity of 1 9.936 Pk ft (p: 902.2 854.2	sia)	r_{c}	$\frac{-e^{-5}}{3\cdot 28}$	0.148 (For) ² 176-25	cf/bbl. deg. (F (1	c ^Q) ² -e ^{-s})	Specif Specif P ₀ P _w 2	fic Gravi 9 88-2 P _c ² -P _w ²	ty Flowin P ² Cal. Pw	g Fluid 776.5 Pw Pc	
Liquid vity of 1 9.936 "h "t (p: 554.2 854.2 811.2	Liquid Hyd sia) 814 729 654	$\frac{1}{2}$	e = 5 / / / / / / / / / / / / / / / / / /	0.148 (F ₀ 2) ² 176.25 330.66 477.68	cf/bbl. deg. (F (1 	cQ) ² -e ^{-s}) 09 94 70	Specif Specif Fc Pw2 840.1 777.6 728.8	P ² -P ² P ² -P ² 136-6 198.9 247.7	Cal. Pc Cal. Pw 916.6 881.8 853.6	g Fluid	
E Liquid vity of 1 9.936 p rt (p: 854.2 811.2 714.2	Liquid Hyd sia) 814 729 654	$\frac{1}{2}$	$\frac{-e^{-5}}{3\cdot 28}$	0.148 (For) ² 176.25 330.66	cf/bbl. deg. (F (1 26. 48.	cQ) ² -e ^{-s}) 09 94 70	Specif Specif F _c P _w 2 P _w 2	P ² -P ² _w 136.4	ty Flowin P ² Cal. Pw	P.W. P.C. P.C. P.C. P.C. P.C. P.C. P.C.	
E Liquid vity of 1 9.936 Pk Ft (pr 902.2 854.2 811.2 714.2	Liquid Hyd sia) 729 654 510	$\frac{1}{2}$	ons e ^{-S} / 3.28 818 1.86 8.41	0.148 (F ₀ 2) ² 176.25 330.66 477.68	cf/bbl. deg. (F (1 	c ^Q) ² -e ^{-s}) 94 70 46	Specif Specif F _c P _w 2 P _w 2 840.1 777.6 728.8 629.5	P ² -P ² P ² -P ² 136-6 198.9 247.7	Cal. Pc Cal. Pw 916.6 881.8 853.6	g Fluid 776.5 Pw Pc 0.928 0.892 0.864	
E Liquid wity of 1 9.936 Ph Ft (p: 854.2 811.2 714.2 solute Pc MPANY Hu	Liquid Hyd sia)	1rocarbo (1 2 t 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$e^{-e^{-5}}$	0.148 (F ₀ 2) ² 176.25 330.66 477.68 807.18	cf/bbl. deg. (F (1 	cQ) ² -e ^{-s}) 09 94 70	Specif Specif F _c P _w 2 P _w 2 840.1 777.6 728.8 629.5	P ² -P ² P ² -P ² 136-6 198.9 247.7	Cal. Pc Cal. Pw 916.6 881.8 853.6	g Fluid 776.5 Pw Pc 0.928 0.892 0.864	
E Liquid wity of 1 9.936 Ft (p: 54.2 811.2 714.2 Solute Pc MPANY Hu DRESS	sia) Bia) Bia) Bia) Bia Bia Bia Bia Bia Bia Bia Bia Bia Bia	1rocarbo (1 2 t 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$e^{-e^{-5}}$	0.148 (For) ² 176.25 330.66 477.68 807.18	cf/bbl. deg. (F (1 26. 48. 70. 119. 	cQ) ² -e ^{-s}) 09 94 70 46 r0.82	Specif Specif Fc Pw2 840-1 777.6 728.8 629.5	P ² -P ² P ² -P ² 136-6 198.9 247.7	Cal. Pc Cal. Pw 916.6 881.8 853.6	g Fluid 776.5 Pw Pc 0.928 0.892 0.864	
Liquid vity of 1 9.936 Pw Ft (pr 902.2 854.2 811.2 714.2 solute Pc MPANY Hu DRESS ENT and T TNESSED	sia) Bia) Bia) Bia) Bia Bia Bia Bia Bia Bia Bia Bia Bia Bia	1rocarbo (1 2 5 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ons -e ^{-s} / 3.28 818 1.86 8.41 0 Ing Co N.14.	0.148 (Pot 2) ² 176.25 330.66 477.68 807.18 mpany	cf/bbl. deg. (F (1 26. 48. 70. 119. 	c ^Q) ² -e ^{-s}) 94 70 46	Specif Specif Fc Pw2 840-1 777.6 728.8 629.5	P ² -P ² P ² -P ² 136-6 198.9 247.7	Cal. Pc Cal. Pw 916.6 881.8 853.6	g Fluid 776.5 Pw Pc 0.928 0.892 0.864	

.1

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q _ Actual rate of flow at end of flow period at W. H. working pressure (P_w). MCF/da. @ 15.025 psia and 60° F.
- P_c= 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- P_w: Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- P_f Meter pressure, psia.

.

hwI Differential meter pressure, inches water.

FgI Gravity correction factor.

 F_t Flowing temperature correction factor.

F_{pv} Supercompressability factor.

n [Slope of back pressure curve.

Note: If P_w cannot be taken because of manner of completion or condition of well, then P_w must be calculated by adding the pressure drop due to friction within the flow string to P_t .