NEW MEXICO OIL CONSERVATION COMMISSION MODEO CORRESPONDE OCC Form C-122 Revised 12-1-55 ## MULTI-POINT BACK PRESSURE TESTSFOR GAS WELLS 03 | | Jalm | | | r | ormation | | | | county_ | TOS | | |--------------------------|---|---|---------------------------------|---------------------------------------|---|--|---------------------------------------|---|--|---------------|--| | [nitia] | L | | Annua | <u>.</u> | | Spec | ial | <u>x</u> | Date of | Test | 11-19 to 11-2 | | | | | | | | | | | | | 88 | | | | | | | | | | | | | | | | _ | _ | ess. <u>13.2</u> | | | | | | | | | Sina | gle-Brade | ell_
enhead-G. | G. or (| 3.0. Dual | | | • | | | | | | ED DATA | | - 1 1 · · · · · · · · · | | | | ested | Through | (Prov | <u>ver) (연</u> | roko ∫ | (Meter) | | ED DAIR | | Type Tap | s <i>F1</i> | 9 | | | | Flow Data | | a | | | Tubing | Data Casing | | ata | T | |) (| Prover)
(Line) | (Che | | | Diff. | Temp. | Press. | | | | Duration of Flow | | | Size | Si | ze | psig | h _w | °F. | psig | °F. | psig | °F∙ | Hr. | | | 4 | 2.1 | 25 | 59 | 1.20 | 60 | 8 92
3 69 | <u> </u> | 896 | ļ | 72 | | + | 4 | 2.1 | | 66 | 41.0
36.0 | 60 | 401 | | 429
450 | | 24 | | | 4 | 2.1 | | 55 | 30.0 | 60 | 464 | | 501 | † | 24 | | | 4 | 2.1 | | /1 | 22.0 | 60 | 540 | | 568 | | 24 | | Fle | Coeffici
(24-Hou | r) | √ h _w p _f | - | essure | Flow Taci | tor | Gravity | Facto | r | Rate of Flow
Q-MCFPD
@ 15.025 psia | | | 29.17 | | | | | | | | - | | 1.467 | | | 27.17 | | 53. 33 | | 79.2 | 1.00 | | | | | | | | 29.17
29.17 | ' | 48.3 | | 78.2 | 1.00 | | 91,27 | | | 1_330 | | | | ' | | | | | 0 | .9427
.9427 | - | | 1,330 | | Liqui | 29.17 | carbon
d Hydr | 48.37
42.98
Ratio | 8 8 | 78.2
34.2
PRI | 1.00
1.00
ESSURE CA
cf/bbl.
deg. | 0 | 9427
9427
ONS
Speci
Speci | fic Gravi | ty Flow | rator Gas_ | | Liquivity of Pw | 29.17 29.17 id Hydro of Liqui 9.936 | carbon
d Hydro | Ratio ocarbon (1- | s e-s) | 78.2
34.2
PRE | cf/bbl.deg. | ALCUIATIO | Speci
Speci
P _c | fic Gravific Gravific Gravific Gravific Gravific P09.2 | ty Flow
PC | rator Gas_ring Fluid | | Liquivity of Pw | 29.17 29.17 id Hydro of Liqui 9.936 | carbon
d Hydro | Ratio ocarbon (1- | s _e -s) | (F _c Q) ² | 1.00
1.00
1.00
ESSURE CA
cf/bbl.
deg.
51 | Q) ² -e-s) | 9427
-9427
ONS
Speci
Speci
Pc-
Pw2 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid826.6 | | Liquivity of | 29.17
29.17
id Hydro
of Liqui
9.936
(psia) | carbon
d Hydr
Pt | Ratio ocarbon (1- | s e - s) | (F _c Q) ² | 1.00
1.00
1.00
ESSURE CA
cf/bbl.
deg.
51 | Q) ² -e-s) 7.8 | 9427
9427
ONS
Speci
Speci
P _C
P _w 2 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid_826.6 | | Pw Pt | 29.17 29.17 id Hydro of Liqui 9.936 | carbon
d Hydro | Ratio_ocarbon(1 | s e - s) | (F _c Q) ² | 1.00
1.00
1.00
ESSURE CA
cf/bbl.
deg.
51 | Q) ² -e-s) 7.8 2.0 | 9427
-9427
ONS
Speci
Speci
Pc-
Pw2 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid | | Pw Pt 55 | 29.17
29.17
id Hydro
of Liqui
9.936
(psia)
42.2
43.2 | p _t ² | Ratio ocarbon (1- | Se ⁻⁵) | (F _c Q) ² 250 212 174 | 1.00
1.00
1.00
ESSURE CA
cf/bbl.
deg.
51 | Q) ² -e-s) 7.8 2.0 6.3 | 9427
9427
9427
ONS
Speci
Speci
Pc-
Pw2
195.5
214.6
264.4
337.8 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid | | Pw Pt 55 | 29.17
29.17
id Hydro
of Liqui
9.936
(psia)
42.2
63.2
14.2
81.2 | carbon d Hydro 171. 227. 306. | Ratio ocarbon (1- | 80
555
20
70 | (F _c Q) ² 250 212 174 137 | 1.000 1.000 1.000 ESSURE CA cf/bbl. deg. 51 (F. (1- 31 32 20 MCFPD; | Q) ² -e-s) 7.8 2.0 | 9427
9427
9427
ONS
Speci
Speci
Pc-
Pw2
195.5
214.6
264.4
337.8 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid | | Pw Pt Solute MPANY | 29.17
29.17
id Hydro
of Liqui
9.936
(psia)
42.2
63.2
14.2
81.2 | carbon d Hydro 171. 227. 306. ial: Citi | Ratio ocarbon (1- | 80
555
20
70 | (F _c Q) ² 250 212 174 137 | 1.000 1.000 1.000 ESSURE CA cf/bbl. deg. 51 (Foundation of the content co | Q) ² -e-s) 7.8 2.0 6.3 | 9427
9427
9427
ONS
Speci
Speci
Pc-
Pw2
195.5
214.6
264.4
337.8 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid_826.6 | | Pw Pt Solute MPANY DRESS | 29.17
29.17
id Hydro
of Liqui
9.936
(psia)
42.2
63.2
14.2
81.2 | carbon d Hydro 146. 171. 227. 306. ial: Box | Ratio ocarbon (1- | 80
555
20
70
850 | (F _c Q) ² 250 212 174 137 | 1.00 1.00 1.00 1.00 1.00 CSSURE CA cf/bbl. deg. 31 (F. (1- 32 20 20 MCFPD; | Q) ² -e-s) 7.8 2.0 6.3 0.7 | P _w 2 195.5 214.6 264.4 337.8 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid_826.6 | | Pw Pt Solute MPANY DRESS | 29.17 29.17 29.17 id Hydro of Liqui 9.936 (psia) 42.2 63.2 14.2 81.2 e Potent | carbon d Hydro 171. 227. 306. ial: Citi Box | Ratio ocarbon (1- | 80
55
20
70
850
rice (| (F _c Q) ² 250 212 174 137 | 1.00 1.00 1.00 1.00 1.00 CSSURE CA cf/bbl. deg. 31 (F. (1- 32 20 20 MCFPD; | Q) ² -e-s) 7.8 2.0 6.3 | P _w 2 195.5 214.6 264.4 337.8 | fic Gravific | ty Flow
PC | rator Gas_ring Fluid_826.6 | ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q I Actual rate of flow at end of flow period at W. H. working pressure (P_w) . MCF/da. @ 15.025 psia and 60° F. - P_c 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - Ft Flowing temperature correction factor. - F_{pv} Supercompressability factor. - n I Slope of back pressure curve. Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.