	UNITE TATES DEPARTMENT OF THE IN BUREAU OF LAND MANAG	TERIOR	1625	5 N. Frenc	h Dr.	FORM APPROVED OMB No. 1004-0135 Expires November 30, 2000			
			E, Hob	os, NM 88	3240 Lease S	Serial No.			
SUNDRY NOTICES AND REPORTS ON WELLS BOBS, NM 882 Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals. SUBMIT IN TRIPLICATE - Other instructions on reverse side						 107-85937 6. If Indian, Allottee or Tribe Name 7. If Unit or CA/Agreement, Name and/or No. 107091846118 			
8. Well Name and No. PROHIBITION FEDERAL UNIT #6									
MARALO, LLC					9. API Well No.				
3a. Address P. O. BOX 832, MIDLANI	3b. Phone No. (include area code) (915) 684-7441			30-025-32760					
4. Location of Well (Footage, Sec.			15) 084-/4	41		nd Pool, or Exploratory Area K - DELANARE			
2310' FNL & 990' FEL,				11. County	11. County or Parish, State				
12. CHECK AP	PROPRIATE BOX(ES) TO	INDICATI	E NATURE	OF NOTICE,					
TYPE OF SUBMISSION	TYPE OF ACTION								
Notice of Intent	Alter Casing	Deepen Fracture 7	Treat	Production (Sta Reclamation	art/Resume)	Water Shut-Off Well Integrity			
Subsequent Report	Casing Repair Change Plans	New Con: Plug and A		Recomplete	bonden	Other			
Final Abandonment Notice		Plug Back		Temporarily A Water Disposa		· · · · · · · · · · · · · · · · · · ·			
 I hereby certify that the foregoin Name (Printed/Typed) DOROTHEA LOGAN 	ng is true and correct		Title pro	SULATORY ANAL					
Signature Danethe	a Logan	·······	Data	RIL 3, 2001	131	······			
	THIS SPACE FO	OR FEDER	AL OR STAT	TE OFFICE US	E				
Approved by Conditions of approval, if any, are certify that the applicant holds legs which would entitle the applicant to	al or equitable title to those rights	does not war	ETROLEL rant or t lease Office			Date			
Title 18 U.S.C. Section 1001 and Ti States any false, fictitious or fraudul	itle 43 U.S.C. Section 1212, make i ent statements or representations as	t a crime for a to any matter	ny person know within its juriso	wingly and willfull diction.	y to make to an	y department or agency of the Unite			

ATTACHMENT to Incident of Noncompliance # AJM-026-01

The following information is needed before your disposal of produced water can be approved, per Onshore Oil & Gas Order #7.

You may attach this information to your Sundry Notice (3160-5). Submit all required information as^cper this attachment, submit a Sundry Notice(3160-5), one original and five copies to this office within the required time.

1. Name(s) of all formation(s) producing water on the lease. **DELAWARE**

2. Amount of water produced from all formations in barrels per day. APPROXIMATELY 93 BBLS/DAY

- 3. A CURRENT water analysis of produced water from all zones showing at least the total dissolved solids, ph, and the concentrations of chlorides and sulfates. ATTACHED -
- 4. How water is stored on the lease. ONE (1) 500 BARREL FIBERGLASS WATER TANK

5. How water is moved to the disposal facility. BY PIPELINE

6. Identify the Disposal Facility by:

- A. Operators' Name MARALO, LLC
- B. Well Name PROHIBITION FEDERAL UNIT
- C. Well type and well number SALT WATER DISPOSAL #2
- D. Location by quarter/quarter, section, township, and range NELSING, SEC. 11, T22S. R32E, NMPH
- A copy of the Underground Injection Control Permit issued for the injection well by the Environmental Protection Agency or New Mexico Oil Conservation Division where the State has achieved primacy. -ATTACHED-

DISPOSAL REPORT

PROHIBITION FEDERAL #2 SWD MONTH $\underline{Feb.01}$

<u>PIPELINE</u>

WILD TURKEY "9" STATE #1	= 1315						
WILD TURKEY "10" STATE #1	<u></u>						
TOTAL	= 1868						
EMERALD FEDERAL	<u> </u>						
PROHIBITION FEDERAL #4	= 1376						
PROHIBITION FEDERAL #5	=						
PROHIBITION FEDERAL #6							
TOTAL	= 7198						
PROHIBITION FEDERAL #1	= 284						
PROHIBITION FEDERAL #3	=						
ARKLAND PRODUCING (BAR 1	NONE FED) = U						
C. W. TRAINER(BOOTLEG ST.)	·						
```'	 Q201						
TOTAL WATER DISPOSED FOR MONTH = $\frac{1391}{1391}$							

C:\WPWIN60\DOCS\DONNA\PRO#2SWD.GC

PERMIAN TRTG

0.00

0.00

3,417.82 199,806

84.00

71.03

58.46

*Milli Equivalents per Liter

NaHCO3

NaSO4

NaC1

0

0

# Permian Treating Chemicals WATER ANALYSIS REPORT

# SAMPLE

Well No.: #	chibition Fe		) 		Sample Loc. : Date Analyzed: Date Sampled :		-			
ANALY	SIS									
1. pH 2. 5p 3. Ca	l Decific Gra ICO3 Satura	vity 60, ation Inc	iex @ 8	5.0 1.1 0 F. 0 F.	73 -0.297 +1.738					
	olved Gass				MG/L	E	Q	WI.	*MEQ/L	
5. Cã	drocen Sul Irboñ Dioxi ssolved Ox	lde		Not	ot Pregent Determined Determined					
8. Ma 9. Sc	ons Icium Icium Ignesium Igium Irium	(Ca++) (Mg++) (Na+) (Ba++)	(Calcul	ated)	14,741 2,683 78,641 Below 10	111	20. 12. 23.	1 = 2 = 0 =	733.38 219.92 3,419.17	
12 Ca 13. Bi 14. Su 15. Ch	droxyl carbonate lfate loride	(SO4=) (C1=)			0 73 230 154,965	11111	17. 30. 61. 48. 35.	00185	0.00 0.00 1.19 4.71 4,365.21	<b>;</b> 
<u>፡ ነን ሞ</u> ~	tal Dissol tal Iron tal Hardne sistivity	(Fe)		ated)	251,333 31 47,857 0.001 /cm.	1	18.	2 =	1.70	I
LC	GARITHMIC	WATER PA	ATTERN		PROB. COMPOUND	abl	e m Eq.	INER WT.	AL COMPOSI X *meg/L	TION = mg/L.
Na MHHI		-		Cl	Ca (HCO3	)2	81	. 04	1.19	97
					CaSO4		68	.07	4.71	321
Mg IIIIII				804	CaCl ₂		55	.50	727.48	40,375
Fe Willi					Mg (HCO3	)2	73	.17	0.00	0
	200 103 10		1000 1000		MgS04		60	.19	0.00	0
Calciv	m Sulfate	Solubil:	ty Prot	110	MgCL ₂		47	.62	219.92	10,472
178 1884 178					1.2022		- /			



This water is somewhat corrosive due to the pH observed on analysis. The corrosivity is increased by the content of mineral salts in solution.

#### PAGE 02

# Permian Treating Chemicals WATER ANALYSIS REPORT

## SAMPLE

Oil Co. : Maralo, LLC. Lease : Prohibition Fed. Well No.: # 6 Lab No. : F:\ANALYSES\Apr0301.002

Sample Loc. : Date Analyzed: 03-April-2001 Date Sampled : 29-March-2001

# ANALYSIS

1. pH 2. Specific Gravity 60/60 F. 1.168 3. CaCO ₃ Saturation Index @ 80 F +0.0 @ 140 F +2.1				
Dissolved Gasses	MG/L	EQ. WT.	*MEO/L	
4. Hydrogen SulfideNot 15. Carbon DioxideNot Determine6. Dissolved OxygenNot Determine				
Cations 7. Calcium (Ca ⁺⁺ ) 8. Magnesium (Mg ⁺⁺ ) 9. Sodium (Na ⁺ ) (Calculated) 10. Barium (Ba ⁺⁺ ) Be	13,267 2,086 78,217 10w 10	/ 20.1 = / 12.2 a / 23.0 =	660.05 170.98 3,400.74	
IJ, CHIOLKAC (III /	0 73 225 149,966	/ 17.0 = / 30.0 = / 61.1 = / 48.8 = / 35.5 =	0.00 0.00 1.19 4.61 4,224.39	
17. Total Iron (Fe)	243,834 29 41,721 .001 /cm.	/ 18.2 🛥	1.59	
LOGARITHMIC WATER PATTERN *meq/L.	PROBA COMPOUND	BLE MINER EQ. WT.	AL COMPOSITI X *meq/L =	NG/L.
	Ca(HCO3)	2 81.04	1.19	97
Ca HHH MILL HHH HHH HHH HHH	CaSO4	68.07	4.61	314
	CaCl ₂	\$5.50	654.24 3	86,311
	Mg (HCO3)	2 73.17	0.00	0
10000 1000 200 10 1 10 100 1000 10000	MgS04	60.19	0.00	0
Calcium Sulfate Solubility Profile	MgCL2	47.62	170.98	8,142
	NaHCO3	<b>54.00</b>	0.00	0
	NaSO4	71.03	0.00	0
1870 1870 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877	NaCl *Mil:	58.46 11 Equival	ents per Li	

This water is somewhat corrosive due to the pH observed on analysis. The corrosivity is increased by the content of mineral salts in solution.

#### STATE OF NEW MEXICO

### ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

#### **OIL CONSERVATION DIVISION**

BRUCE KING

ANITA LOCK WOOD CABINET SECRETARY POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

### ADMINISTRATIVE ORDER SWD-569

#### LEA APPLICATION OF MARALO, INC. FOR SALT WATER DISPOSAL, EDDY COUNTY, NEW MEXICO.

### ADMINISTRATIVE ORDER OF THE OIL CONSERVATION DIVISION

Under the provisions of Rule 701(B), Maralo, Inc. made application to the New Mexico Oil Conservation Division on August 29, 1994, for permission to complete for salt water disposal its Prohibition Federal Well No. 2 located 1980 feet from the South line and 2080 feet from the West line (Unit K) of Section 11, Township 22 South, Range 32 East, NMPM, Lea County, New Mexico.

### THE DIVISION DIRECTOR FINDS THAT:

٠.

(1) The application has been duly filed under the provisions of Rule 701(B) of the Division Rules and Regulations;

(2) Satisfactory information has been provided that all offset operators and surface owners have been duly notified;

(3) The applicant has presented satisfactory evidence that all requirements prescribed in Rule 701 will be met; and

(4) No objections have been received within the waiting period prescribed by said rule.

## IT IS THEREFORE ORDERED THAT:

The applicant herein, Maralo, Inc. is hereby authorized to complete its Prohibition Federal Well No. 2 located 1980 feet from the South line and 2080 feet from the West line (Unit K) of Section 11, Township 22 South, Range 32 East, NMPM, Lea County, New Mexico, in such manner as to permit the injection of salt water for disposal purposes into the Delaware formation at approximately 5220 feet to 8706 feet through 2 7/8-inch plastic-lined tubing set in a packer located at approximately 5150 feet.

Administrative Order SWD-569 Maralo, Inc. September 20, 1994 Page 2

#### IT IS FURTHER ORDERED THAT:

The operator shall take all steps necessary to ensure that the injected water enters only the proposed injection interval and is not permitted to escape to other formations or onto the surface.

Prior to commencing injection operations into the well, the casing shall be pressure tested from the surface to the packer setting depth to assure the integrity of said casing.

The casing-tubing annulus shall be loaded with an inert fluid and equipped with a pressure gauge at the surface or left open to the atmosphere to facilitate detection of leakage in the casing, tubing, or packer.

The injection well or system shall be equipped with a pressure limiting device which will limit the wellhead pressure on the injection well to no more than 1044 psi.

The Director of the Division may authorize an increase in injection pressure upon a proper showing by the operator of said well that such higher pressure will not result in migration of the injected fluid from the Delaware formation. Such proper showing shall consist of a valid step-rate test run in accordance with and acceptable to this office.

The operator shall notify the supervisor of the Hobbs district office of the Division of the date and time of the installation of disposal equipment and of the mechanical integrity test so that the same may be inspected and witnessed.

The operator shall immediately notify the supervisor of the Hobbs district office of the Division of the failure of the tubing, casing, or packer in said well and shall take such steps as may be timely and necessary to correct such failure or leakage.

<u>PROVIDED FURTHER THAT</u>, jurisdiction of this cause is hereby retained by the Division for the entry of such further order or orders as may be deemed necessary or convenient for the prevention of waste and/or protection of correlative rights; upon failure of the operator to conduct operations in a manner which will ensure the protection of fresh water or in a manner inconsistent with the requirements set forth in this order, the Division may, after notice and hearing, terminate the injection authority granted herein.

The operator shall submit monthly reports of the disposal operations in accordance with Rule Nos. 706 and 1120 of the Division Rules and Regulations.

Administrative Order SWD-569 Maralo, Inc. September 20, 1994 Page 3

The injection authority granted herein shall terminate one year after the effective date of this order if the operator has not commenced injection operations into the subject well, provided however, the Division, upon written request by the operator, may grant an extension thereof for good cause shown.

Approved at Santa Fe, New Mexico, on this 20th day of September, 1994.

WILLIAM J/LEMAY, Director

WJL/BES/amg

xc: Oil Conservation Division - Hobbs US Bureau of Land Management - Carlsbad