3	۰	000
1	-	Midland
1	-	File

. ·

,

______ NTLT-LI

1 an 12

NEW MEXICO OIL CONSERVATION COMMISSION

									~		Form C-1
			v	111 ጥፓ	אפי יייאראס	רע ססדל				I	Revised 12-1-
പ	Eunont	2									
	ial										
	any Tide										
it	A	Sec. 17	Twp.	21	Rge	. 36	Purch	naser_	1 Paso Na	t. Gas	co.
	ng 2-1/2 V										
											ss. 13.2
	ucing Thru: Dual										
;e	Dual of Complet	ion:	9-10-	-52	Packer	- 6.9	Sing	gle-Brade Reservo	nhead-G. ir Temp.	G. or G	.0. Dual
	•						ED DATA				
=+,	ed Through	Prove	ar) (Ch	oke)	(Meter)	0202.00			Type Tan	9	
-			low Dat				Tubing	Data	Casing D		
Γ	(1966/196/1) (Line)	(Chhh	A) P	a ress.	Diff.	Temp.	Press.	Temp.	Press.	Temp.	Duration
'	(Line) Size	(Orifi Siz	ice) ze	psig	hw	°F.	psig	° _F .	psig	^{>} F•	of Flow Hr.
T									937		72
L		1.29			4.41	_58			887	 	
┢		1,29		547	12.25	_\$7			850		24
╀		1.25		551	29.16	60		- <u></u>	<u>802</u> 737		24
		1.25		545	58.90	. 62	· · · · · · · · · · · · · · · · · · ·				
		.L							L	<u>.</u>	
Т	Coeffici	ent		Dn	essure	Flow '	CULATIONS	Gravity	Compre	55.	Rate of Flow
	COELITCI			111	essure	Fac	•	Factor	Facto		Q-MCFPD
1	(24-Hou	1r) -	√ ^h w ^p f	-	psia	F	1	Fg	F _{pv}		@ 15.025 psia
┢											
╀	9.643		49.35			1.0019		.9549	1.0		483.1
╋	9.643		82.54			1.0029		.9549	1.0		1254
╋			28.27			.9921		9549	1.0		1764
t	9.643										
						cf/bbl.	ALCULATIO				rator Gas
	iquid Hydro					dog			fic Gravi		THE LIGTO
ri	iquid Hydro ty of Liqui .865	id Hydro	ocarbon	s	.133	deg.		Speci	fic Gravi 940.2	$P_{c}^{P_{c}}$	884.0
/i† —	ty of Liqui	id Hydro	ocarbon(1-	s e ^{-s})	.133	deg.		Speci P _c	940.2	_P ²	884.9
/i† —	ty of Liqui	id Hydro	ocarbon	s e ^{-s})		deg.	c ^{Q)² -e^{-s})}	Speci Pc P _w 2	940.2	_P2 Ca	884.9
vit —	<pre>ty of Liqui .865 /// /// Pt (psia) 900.2</pre>	id Hydro Pt 810.4	(1(1	s e-s)	.133 (F _c Q) ² .1744	deg.	-e-0)	Speci Pc Pw ²	940.2 P _c ² -P _w ² 73.6	_P ² Ca 	884.9
/i† —	/y Pt (psia) 900.2 863.2	Pt 810.4 745.1	F _c Q	s e-s)	.132 (F _c Q) ² .1746 .4891	deg.	-e ⁻⁰)	Speci Pc Pw2 810.4 745.1	940.2 P _c ² -P _w ² 73.6 139.9	$\begin{array}{c} P_{C}^{2} \\ Ca \\ P \\ \hline 2 \\ 2 \\ 2 \\ 3 \\ 6 \\ \end{array}$	884.9
vit —	ty of Liqui .865 /Py Pt (psia) 900.2 	Pt 810.4 745.1 664.5	F _c Q	s e ^{-s})	.132 (F _c Q) ² .1746 .4893 1.177	deg.	-e ^{-c}) 023 044 155	Speci Pc Pw2 810.4 745.1 644.6	940.2 P _c ² -P _w ² 73.6 138.9 219.4	_P2 Ca 	884.9
	/y Pt (psia) 900.2 863.2	Pt 810.4 745.1	F _c Q	s e ^{-s})	.132 (F _c Q) ² .1746 .4891	deg.	-e ⁻⁰)	Speci Pc Pw2 810.4 745.1	940.2 P _c ² -P _w ² 73.6 139.9	_P2 Ca 	884.9
	<pre>ty of Liqui .865 Py Pt (psia) 900.2 863.2 815.2 750.2</pre>	Pt Pt 810.4 745.1 664.5 562.8	F _c Q	s e ^{-s})	.132 (F _c Q) ² .1746 .4891 1.177 2.329	deg.	-e-0) 023 044 155 307	Speci P _c P _w 2 210.4 745.1 644.6 563.1	940.2 P _c ² -P _w ² 73.6 138.9 219.4	_P2 Ca 	884.9
	<pre>ty of Liqui .865 Pt (psia) 900.2 863.2 815.2 750.2 lute Potent</pre>	Pt 810.4 745.1 562.8 cial:_	F _c Q .417 .699 1.085	s e ^{-s})	.132 (F _c Q) ² .1746 .4893 1.177 2.329	deg.	-e-0) 023 044 155 307	Speci P _c P _w 2 210.4 745.1 644.6 563.1	940.2 P _c ² -P _w ² 73.6 138.9 219.4	_P2 Ca 	884.9
	ty of Liquit .865 Pt (psia) 900.2 863.2 815.2 750.2 lute Potent ANY	Pt 810.4 745.1 664.5 562.8 Cial:	F _c Q .417 .699 1.085 1.424	s e ^{-s})	.132 (F _c Q) ² .1746 .4891 1.177 2.329	deg.	-e-0) 023 044 155 307	Speci P _c P _w 2 210.4 745.1 644.6 563.1	940.2 P _c ² -P _w ² 73.6 138.9 219.4 320.9		884.9
	ty of Liqui .865 Pt (psia) 900.2 863.3 815.2 750.2 lute Potent ANY ESS	Pt 810.4 745.1 664.5 562.8 tial:	F _c Q .417 .699 1.085 1.424	S e-S) 9 5 4350 Canta k, K,	.132 (F _c Q) ² .1746 .4893 1.177 2.329	deg. (F (1 • •	-e-0) 023 044 155 307	Speci P _c P _w 2 210.4 745.1 644.6 563.1	940.2 P _c ² -P _w ² 73.6 138.9 219.4 320.9		884.9
	ty of Liquit .865 Pt (psia) 900.2 863.2 815.2 750.2 lute Potent ANY	Pt 810.4 745.1 664.5 562.8 tial: Cidewate Box 249 5 B. M	F _c Q .417 .499 1.085 1.424 Er Oil . Hobbs	s e ^{-s}) 9 5 4350 Compa 4.N., ing.	.132 (F _c Q) ² .1746 .4893 1.177 2.329	deg. (F (1 • •	-e-0) 023 044 155 307	Speci P _c P _w 2 210.4 745.1 644.6 563.1	940.2 P _c ² -P _w ² 73.6 138.9 219.4		884.9

REMARKS

My

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure (P_W). MCF/da. @ 15.025 psia and 60° F.
- Pc= 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- P_f Meter pressure, psia.
- h_w Differential méter pressure, inches water.
- F_g : Gravity correction factor.
- Ft Flowing temperature correction factor.
- F_{DV}- Supercompressability factor.
- n _ Slope of back pressure curve.

Note: If P_w cannot be taken because of manner of completion or condition of well, then P_w must be calculated by adding the pressure drop due to friction within the flow string to P_t .