NEW MEXICO OIL CONSERVATION COMMISSION Assertance and The second second Santa Fe, New Mexico 17 ACC WELL RECORD 13: 03 Mail to District Office, Oil Conservation Commission, to which Form C-101 was sent not later than twenty days after completion of well. Follow instructions in Rules and Regulations of the Commission. Submit in QUINTUPLICATE. | LOCAT | AREA 64
TE WEL | 0 ACRE | s
ECTLY | | | | | | |-----------------|---------------------------------------|--|------------------|----------------------------|----------------------|---|-----------------------|---------------------------| | | | | | | | *************************************** | State | | | _ | 18 | | ompany or Operat | | 1/ .to- | 2 | (Lease)
-21-5 | -37-3 NMPM. | | Vell No | | | | | | | | County | | | 3440 | | | | • | | | | | | | | | | | | | | | f Section | | <u> </u> | If Sta | te Land the Oil | l and Gas Lease N | o. is | * | nt. de | | Orilling Com | menced | L | December | 16 | , 19 | ing was Completed | January | 14, 19 55 | | Vame of Dri | lling Co | ontracto | r | | Velma Petrel | eum Corporat | lion | | | Address | | | | | Hobbs, New 1 | ieri eo | ••••• | | | Elevation abo | ve sea l | level at | Top of Tubing | Head | 34871 | The in | formation given is to | be kept confidential unti | | Not e | onf1 | ent1 | al | , 19 | | | | | | | | | | | | | | | | | # 15 | IGA I | | | OIL SANDS OR | | | | | | | | to | | | | | | | No. 2, from | | | to | | No. | 5, from | to | | | No. 3, from | | | to | | No. | 6, from | to | | | | | | | V36T | | RED CANTE | | | | | | | :_0 a_d a | | CORTANT WATE | | | | | | | | | | | | 6 | | | · · | | | | | | | | | | • | | | | | | | | | | • | | | | | | | | | | No. 4, from | | ··· | | to | | | feet | | | | | | | | CASING REC | SORD. | | | | | <u> </u> | | NEW O | | KIND OF | CUT AND | | | | SIZE | | WEIGHT
ER FOO | | AMOUR | | PULLED FROM | PERFORATIONS | PURPOSE | | 13 3/8 | | 48# | Mew | 241 | | • | | Surface string | | 8 5/8
5 1/2 | | 32.5
15.5 | # Nev | 3095
5943 | | | 57801-58081 | Salt string
Oil string | | 7 4/6 | | **** | 4 4 | MUDDI | NG AND CEMEN | TING RECORD | | | | SIZE OF
HOLE | SIZE
CASI | OF
NG | WHERE
SET | NO. SACKS
OF CEMENT | METHO
USED | D | MUD
GRAVITY | AMOUNT OF
MUD USED | | 17" | 13 | 3/8 | 255 | 250 | Puero & 1 | Plue | | | | 11 H | | 3/8 | 3108 | 1600 | Primp & 1 | | | | | 7 7/8 | * 5 | 1/2 | 5955 | 200 | Promp & 1 | P 1 W/F | | | | | <u> </u> | | | | <u> </u> | · I | 1 | | | | | | | RECORD O | F PRODUCTION | N AND STIMULA | TION | | | | | | (Record the | e Process used, | No. of Qts. or (| Gals. used, interval | treated or shot.) | | | | | See | attockmen | | | - | | | | | • | | ······ | | | | •••••••• | | | | | •••••• | | •••• | | | ••••• | | | | | | | •••••• | ••••• | | ••••• | | | | | | | | | | | | | Danie CP | | _ C+! | lation | | | | | | | Result of Pro | oauct10: | n Stimu | iation | | | | ••••• | | | | | ······································ | | | | | · · | XX X | | | · · · · · · · · · · · · · · · · · · · | •••••• | •••••• | | ******************** | | Depth Cleaned C | mp | | Result of Pro | oductio | n Stimu | lation | | | ********* | Depth Cleaned C | Dut. | ## TOTAL OF PUBLICATION AND SPECIAL TOTAL If drill-stem or other special tests on deviation surveys with made, submit report on separate sheet and attach hereto ## TOCES USED | Rotary too | ols were | used from | 0 | .feet to | 5956 | feet, ar | nd from | | feet to | fcet. | |--------------|--------------|---------------|---|-------------|------------------------------|--|------------------|------------|---|---------------------| | | | | | | | | | | feet to | | | | | | | | | MINION | | | | | | | | | March 17 | | 19.55 | | | | | | | | | | *************************************** | | | | | | 22 | | | OIL WE | | | | | s was | | | | uid of which | | | | wa | as oil; | % | was emu | ulsion; | | .% water | ; and | 0.4 % wa | as sediment. A.P.I. | | | G | ravity | 400 | ****** | | | | | | | | GAS WEI | | • | | | | 7 | MCF al | .15 | | harrele of | | GAS WE | | _ | | | | | | из | | odinis of | | | lic | luid Hydrocar | bon. Shut in Pr | essure | lbs | | | | | | | Length o | f Time S | Shut in | | | | • | | | | | | PLE | ASE IN | DICATE BE | LOW FORMA | TION T | OPS (IN CO | FORMAN | CE WITH | I GEOGR | APHICAL SECTIO | N OF STATE): | | | | | Southeastern : | New Me | xico | | | | Northwestern N | ew Mexico | | T. Anhy | • | | | . Т. І | Devonian | ,, | | т. | Ojo Alamo | •••• | | | | | | | Silurian | | | | Kirtland-Fruitland | | | | | | | | Montoya | | | | Farmington Pictured Cliffs | | | | | | ••••• | | Simpson
McKee | | | _ | Menefee | | | | | | | | Ellenburger | | • | | Point Lookout | | | T. Grayl | burg | ****** | •••• | . Т. С | Gr. Wash | | | Т. | Mancos | | | T. San A | Andres | 53301 7 | -1632') | Т. С | Granite | | | | Dakota | | | 1. Glori | CLA | | | | Padd oc k
Plinebry | | (-1866
(-2286 | (7) | Morrison | | | | | | | | | | ••••••• | 1 . | Penn | | | | | | | | | | | | P | | | | | | ····· | | | | | | *************************************** | | | | | | | | | | | Т. | | | | | | | | | FORMATIO | ON RECC | ORD | | | | | From | То | Thickness | F | ormation | | From | То | Thicknes | Form | ation | | | | in Feet | | Offination. | | - 1011 | ļ | in Feet | | | | 0 | 1467 | 1 | Red Beds | | | | | | | | | 1467
2519 | 2519
3137 | | Salt & A | | .te | | | | | | | 3137 | 5956 | | Polowite | and the state of t | 4 | | | | | | | | | | | | | | 1 | The state of s | | -1. | | | | | | | | | | ## ATTACH SEPARATE SHEET IF ADDITIONAL SPACE IS NEEDED I hereby swear or affirm that the information given herewith is a complete and correct record of the well and all work done on it so far as can be determined from available records. March 22, 1045 | | | maren <<. 1970 | | | | | |--------------------------------|----------------|----------------|-----------|-------------|--------|--| | Company or Operator, Shell Cil | | Address P. O. | Box 1957, | , Bobbs, Ne | (Date) | | | Name Rousing | For: B. Nevil! | | | | | | | | | | | | | | Perforated casing from 5908'-5932'. Treated thru casing perforations 5908'-5932' with 500 gallons 15% mud acid. (Cardinal). Treated formation thru casing perforations 5908'-5932' with 5000 gallons (Cardinal) Jak-Frac containing 1 pound sand per gallon. Treated formation thru casing perforations 5908'-5932' with 4000 gallons Cardinal WER. Treated formation thru casing perforations 5908'-5932' with 1000 gallons Kerosene with 30 gallons Tretolite, F-46 in solution, followed by 1000 gallons 15% LST acid (CP Type J-4). Treated formation thru casing perforations 5908'-5932' with 100 PO containing 100 gallons Tretolite, F-46 chemical. Set Baker cast iron bridge plug @ 5893'. Perforated casing from 5848'-5878'. Treated formation thru casing perforations 5848'-5878' with 500 gallons 20% mud acid. (CP). Squeezed off all perforations with cement. Reverferated casing from 5850'-5878'. Treated formation thru casing perforations 5850'-5878' with 500 gallons 20% mud acid. (CP). Treated formation thru casing perforations 5850'-5878' with 1000 gallons regular 15% acid. (CP). Treated formation thru casing perforations 5850'-5878' with 5000 gallons Geofrac (CP), containing 1 pound sand per gallon. Set Baker cast iron bridge plug @ 5834'. Perforated casing from 5780'-5808'. Treated formation thru casing perforations 5780'-5808' with 500 gallons mud acid. (CP). Treated formation thru casing perforations 5780'-5808' with 5000 gallons Geofrac (CP) containing 1 pound sand per gallon. On OPT flowed at the rate of 118 BO in 24 hours thru 14/64" choke, cut 0.4% BS&N. FTP 500 psi. Gr. 40 deg. API. GOR 2214. and the second of o entre de la companya entrolling of the state ong ##1 day with the second of the state of the second $\frac{1}{2} \left(\frac{1}{2} \left$ $(\mathcal{M}^{\bullet},\mathcal{M},\mathcal{L}^{\bullet},\mathcal{L}^{\bullet}) = (\mathcal{M}^{\bullet},\mathcal{L}^{\bullet},$ en de la composition La composition de la respective to the control of con $\mathcal{A}^{\mathcal{F}} = \mathcal{A}_{\mathcal{A}}^{\mathcal{F}} \mathcal{A}_{\mathcal{A}}^{\mathcal$ e statistical de la companya de la c La companya de co And the second of o The Property of the Control C