MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS | Revised | 12-1-55 | |---------|---------| | nitial <u>X</u> | Ann | ual | | Spec | ial | | _Date of | Testj | urie 8-9, 196 | |--|---|--|---|---|---|--|---|--|---| | pany T | EXACO Inc. | | I | Lease | Berry U | init | Wel | l No | 1 | | t <u>N</u> | Sec | wp. <u>21</u> | S Rge | . 34E | Purch | naser | None | | ····· | | ing 7m | Wt | I.D | Set | at 14, | 750 _Per | rf. <u>13.9</u> | 08 | To <u>13</u> | .986 | | oing 2-3/8 | Wt. 4.70 | I.D. 1. | 995 Set | at_ <u>13</u> | .860 Per | rf | | То | | | • | | | | | | | | | ess. <u>13.2</u> | | oducing Thru | | . • | | • | | | - | | | | te of Comple | tion: Jun | e 9. 1 | 964ecker | 13. | Sing
860 | gle-Brade
Reservo | nhead-G. ir Temp. | G. or C | .0. Dual | | • | | | · · | | ED DATA | | - | | | | ested Through | (PANAMANA) | TENNALISEN | (Meter) | | | | Type Tap | c Fi | an <i>g</i> a | | | Flow I | | Tuccery | 1 | Tubing | Do+ o | Casing D | | | | | (Choke) | Press. | Diff. | Temp. | Press. | | | Temp. | 1 | | Line) Size | (Orifice)
Size | psig | h _w | o _F . | ps i g | o _F . | psig | [⊃] F• | of Flow
Hr. | | | <u> </u> | | | | 530 0 | | | | 36 | | 3.068 | 1.500 | 590
620 | 7.0 | 105
80 | 4995
4846 | 82
82 | | | 3 3 | | н | " | 880 | 36 | 60 | 4565 | 83 | | | 3 | | tt tt | Ħ | 710 | 65 | 58 | 4326 | 84 | | | 2 | | . ! !! | 77 | 610 | 32 | 70 | 4770 | 82 | | <u> </u> | 20 | | | | | F | LOW CAL | CULATIONS | 3 | | | | | Coeffic | ient | Pr | essure | Flow | Cemp. | Gravity | Compre | ss. | Rate of Flow | | (0) | ur) $\sqrt{h_v}$ | | | Fact | tor | Factor | Facto | r | Q-MCFPD @ 15.025 psia | | (24-HO) | | | | | | | | | | | | | | 503.2
533.2 | .959
.981 | | <u>.9359</u> | 1.0 | | 883
1581 | | 14.36 | ר רו | 2 | | | | | | 13 | 2682 | | | 112 | 2 5 | 102 2 | 1.000 | K 1 : | 17 | 1 1 - 3 | | | | 11 | 112.
179.
21.6 | | 393.2
723.2 | 1.000 | | 11 | | 93 | 3189 | | 11 | 179 | 3.8 | 193.2
123.2
123.2 | 1.000
1.001
990 | 9 | | 1.0 | 93
72 | | | tiquid Hydrovity of Liqui | 179
210
141
ocarbon Rati | i. 8 7 | 723.2
523.2
PRE | 990 | 9 | n
n
ONS
Speci | 1.0
1.0 | 72 ty Sepa | 3189
2015
arator Gas 68
ving Fluid 81 | | Liquid Hydrovity of Liquid Pw | ocarbon Rati | io_19.8
cons_
(1-e ^{-s}) | 723.2
523.2
PRI
370
53.8
.541 | ef/bbl.deg. | ALCUIATIO | n
n
ONS
Speci | 1.0
1.0
fic Gravi | ty Sepa
ty Flow
PC | 3189
2015
arator Gas 68
ving Fluid 81
28,230 | | Liquid Hydrovity of Liquing 9.936 | ocarbon Ratiid Hydrocarb | io_19.8 | PRI
370
53.8
.541 | cf/bbl.deg. | ALCUIATIO | Speci
Speci
Pc | fic Gravi
fic Gravi
fic Gravi | ty Sepa
ty Flow
PC | 3189
2015
arator Gas 68
ving Fluid 81
28,230 | | Liquid Hydrovity of Liquing 9.936 Pw Pt (psia) | P _t 21.0 | io_19.6 cons_(1-e^-s) | PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F. | Q
15
ALCU'ATIO
CQ) ²
-e-s) | N
N
Speci
Speci
P _C | 1.0
1.0
fic Gravi
fic Gravi
313.2
P _c -P _w
3106
4485 | ty Sepaty Flow PC Ca | 3189
2015
arator Gas 68
ving Fluid 81
28,230 | | Liquid Hydrovity of Liquipolar Pw Pt (psia) Pt (psia) France 2 Fra | P _t 25.082 8 23.612 1 20.960 2 | io 19 8 cons (1-e-s) | PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8
710.2 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F | Q
15
ALCU'ATIO
CQ) ²
-e-s) | Speci
Speci
Pc | 1.0
1.0
fic Gravi
fic Gravi
313.2
P _c -P _w
3106
4485
6886 | ty Sepa
ty Flow
PC Ca
F
5012
4873
4619 | 3189
2015
arator Gas 68
ving Fluid 81
28,230
al. Pw
Pc
2 9433
2 9170
3 8693 | | P _w Pt (psia) 5008.2 1859.2 14339.2 | P _t 25.082 23.612 1 20.960 2 18.829 3 | io 19.8
cons
(1-e-s) | 723.2
523.2
PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8
710.2
1004 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F
(1.133
.384
.543 | Q
15
ALCUTATIO
CQ) ²
-e-s)
63 | Pw2 25 124 23 745 21 344 19 372 | 1.0
1.0
fic Gravi
fic Gravi
313.2
Pc-Pw
3106
4485
6886
8858 | ty Sepa
ty Flow
PC Ca
5012
487:
4619 | 3189
2015
arator Gas 68
ving Fluid 81
28,230
28,230
29,33
29,70
29,33
29,70
36,93
18,283 | | Pw Pt (psia) 1859.2 1859.2 1859.2 1439.2 | P ² 25.082 23.612 1 20.960 2 18.829 3 22.879 2 | io_19.8 cons_(1-e^-s) | PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8
710.2 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F
(1:
133
384
543
216 | Q 15 ALCUIATIO | P _w 2 25,124 23,745 21,344 19,372 23,096 | 1.0
1.0
fic Gravi
fic Gravi
313.2
P _c -P _w
3106
4485
6886 | ty Sepa
ty Flow
PC Ca
F
5012
4873
4619 | 3189
2015
arator Gas 68
ving Fluid 81
28,230
28,230
29,33
29,70
29,33
29,70
36,93
18,283 | | Pw Pt (psia) 5.008.2 1.850.2 1.850.2 1.850.2 1.850.2 1.850.2 1.850.2 1.850.2 | P ² 25.082 23.612 1 20.960 2 18.829 3 22.879 2 | io 19.8
cons
(1-e-s) | 723.2
523.2
PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8
710.2
1004 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F
(1:
133
384
543
216 | Q
15
ALCUTATIO
CQ) ²
-e-s)
63 | P _w 2 25,124 23,745 21,344 19,372 23,096 | 1.0
1.0
fic Gravi
fic Gravi
313.2
Pc-Pw
3106
4485
6886
8858 | ty Sepa
ty Flow
PC Ca
5012
487:
4619 | 3189
2015
arator Gas 68
ving Fluid 81
28,230
28,230
29,33
20,170
3693
1,8283 | | Pw Pt (psia) | Pt Pt 1 20,960 2 18,829 3 22,879 20 TEXACO In Box 1270 | io_19.8 cons_(1-e-s) 7cQ 773 6.65 1.68 0.02 | 723.2
523.2
PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8
710.2
1004
400.8 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F
(1.133
.384
.543
.216
MCFPD; | Q 15 ALCUIATIO | P _w 2 25.124 23.745 21.344 19.372 23.096 | 1.0
1.0
fic Gravi
fic Gravi
313.2
Pc-Pw
3106
4485
6886
8858 | ty Sepa
ty Flow
PC Ca
5012
487:
4619 | 3189
2015
arator Gas 68
ving Fluid 81
28,230
28,230
29,33
20,170
3693
1,8283 | | Pw Pt (psia) | Pt Pt 1 20,960 2 18,829 3 22,879 20 TEXACO In Box 1270 | io_19.8 cons_(1-e-s) 7cQ 773 6.65 1.68 0.02 | 723.2
523.2
PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8
710.2
1004
400.8 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F
(1.133
.384
.543
.216
MCFPD; | Q 15 ALCUIATIO | P _w 2 25.124 23.745 21.344 19.372 23.096 | 1.0
1.0
fic Gravi
fic Gravi
313.2
Pc-Pw
3106
4485
6886
8858 | ty Sepa
ty Flow
PC Ca
5012
487:
4619 | 3189
2015
arator Gas 68
ving Fluid 81
28,230
28,230
29,33
29170
3693
18693
18283 | | Liquid Hydrovity of Liquid Pw Pt (psia) Pt (psia) 5008.2 1859.2 1859.2 1859.2 1859.2 1878.2 1878.2 1878.2 1878.2 | Pt Pt 1 20,960 2 18,829 3 22,879 20 TEXACO In Box 1270 | io_19.8 cons_(1-e-s) 7cQ 773 6.65 1.68 0.02 | 723.2
523.2
PRI
370
53.8
.541
(F _c Q) ²
76.96
246.8
710.2
1004
400.8 | 1.001
.990
ESSURE CA
cf/bbl.
deg.
(F
(1.133
.384
.543
.216
MCFPD; | Q 15 ALCUIATIO | P _w 2 25.124 23.745 21.344 19.372 23.096 | 1.0
1.0
fic Gravi
fic Gravi
313.2
Pc-Pw
3106
4485
6886
8858 | ty Sepa
ty Flow
PC Ca
5012
487:
4619 | 3189
2015
arator Gas 68
ving Fluid 81
28,230
28,230
29,33
29,70
29,33
29,70
36,93
18,283 | Duration of 4th point only 2 hours due to separator freezing. 5th point of 20 hours fell to right of 45° curve so was not used in determining the absolute potential. ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q I Actual rate of flow at end of flow period at W. H. working pressure (P_w) . MCF/da. @ 15.025 psia and 600 F. - P_c = 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - P_{w} Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt- Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pf Meter pressure, psia. 19.114 62 91 MMC - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - F_{t} Flowing temperature correction factor. - Fpv Supercompressability factor. - n I Slope of back pressure curve. Note: If P_w cannot be taken because of manner of completion or condition of well, then P_w must be calculated by adding the pressure drop due to friction within the flow string to P_t . μθ. μθ. eε ()! 31 Mul HO89S CTFICE O. C. C.