XORIN'I PROGRAM	NONE				•		
•							•
							-
					•		
ILL STEM TESTS							
	NONE						
			•		-		
					·		•
WPLES					· · ·	•	
	Original copy of geolograph	to be forwarded to	Citation Geolog	ists.			
		-					
						•	
UID SAMPLES							
	NONE						
	•						
UD LOGGING							
					caught from 2	,900' to TD).
	A Mudlogger will be on locat	ion from 2,900 to	TD. Ten foot sai	npie will be			
	A Mudlogger will be on locat	10n from 2,900 to	TD. Ten foot sai	npie will be			
	A Mudlogger will be on locat		TD. Ten foot sai	npie will be			
	A Mudlogger will be on locat		TD. Ten foot sa	npie will be			
	Drill well to planned TD 3,800 production casing. Complete the objective zone	D' as per drilling pr	ognosis. Run & as follows:	Cmt 5 1/2*			
	Drill well to planned TD 3,800 production casing. Complete the objective zone	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159	ognosis. Run & as follows: 6 HCL acid; 50 r	Cmt 5 1/2* ngal 30# lin	ear 50/50 Q C	O2 + 150N	ſ# 12/20
VALLIATION	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159	ognosis. Run & as follows: 6 HCL acid; 50 r	Cmt 5 1/2* ngal 30# lin	ear 50/50 Q C	O2 + 150N	ſ# 12/20
VALUATION	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159	ognosis. Run & as follows: 6 HCL acid; 50 r	Cmt 5 1/2* ngal 30# lin	ear 50/50 Q C	O2 + 150N	ſ# 12/20
VALLIATION	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga Desander & BP esign	Cmt 5 1/2" ngal 30# lin I 30# lin 50,	ear 50/50 Q C	O2 + 150N	ſ# 12/20
OMPLETION	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H g, TAC, IPC jt, SN w/ a 76 API rod do ; HP electric motor	ognosis. Run & as follows: 6 HCL acid; 50 r CL acid; 50 mga , Desander & BP esign	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C	O2 + 150N	12/20
	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H g, TAC, IPC jt, SN w/ a 76 API rod do ; HP electric motor	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga Desander & BP esign	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	12/20
	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H g, TAC, IPC jt, SN w/ a 76 API rod do ; HP electric motor	ognosis. Run & as follows: 6 HCL acid; 50 r CL acid; 50 mga , Desander & BP esign	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	ſ# 12/20
COST EXPECTED LOW HIGH	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H g, TAC, IPC jt, SN w/ a 76 API rod do ; HP electric motor	ognosis. Run & as follows: 6 HCL acid; 50 r CL acid; 50 mga , Desander & BP esign	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	ſ# 12/20
COST EXPECTED LOW HIGH	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots; 7 Rivers/Queer+/- 32 shots; 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H g, TAC, IPC jt, SN w/ a 76 API rod do ; HP electric motor	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	ſ# 12/20
COST EXPECTED LOW HIGH	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do b HP electric motor EVAL	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	<i>¶</i> # 12/20
VALUATION OMPLETION COST EXPECTED LOW HIGH IGHED DISTRICT D	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H g, TAC, IPC jt, SN w/ a 76 API rod do ; HP electric motor	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	ſ# 12/20
VALUATION COST COST EXPECTED LOW HIGH HGMED ØXSTRICT D	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots; 7 Rivers/Queer+/- 32 shots; 2 3/8" 4.7# J-55 EUE 8rd tb 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do b HP electric motor EVAL	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	<i>¶</i> # 12/20
COST COST COST COST COST COST COW HIGH SIGNED DISTRICT D	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots; 7 Rivers/Queer+/- 32 shots; 2 3/8" 4.7# J-55 EUE 8rd tb 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do b HP electric motor EVAL	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA DATE	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	<i>¶</i> # 12/20
COST COST EXPECTED LOW HIGH HIGHED DISTRUCT D	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do b HP electric motor EVAL	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	12/20
VALUATION COST COST EXPECTED LOW HIGH HGNED (DISTRUCT D XISTRUCT OPERATIO	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots; 7 Rivers/Queer+/- 32 shots; 2 3/8" 4.7# J-55 EUE 8rd tb 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do b HP electric motor EVAL	ognosis. Run & as follows: 6 HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA DATE	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	ſ# 12/20
COST COST EXPECTED LOW HIGH HIGHED DISTRUCT D	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots 7 Rivers/Queer+/- 32 shots 2 3/8" 4.7# J-55 EUE 8rd th 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING DRILLING	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do b HP electric motor EVAL	ognosis. Run & as follows: 6 HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA DATE DATE DATE	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	ſ# 12/20
COST COST EXPECTED LOW HIGH EXGNED DISTRICT D DISTRUCT OPERATIO	Drill well to planned TD 3,800 production casing. Complete the objective zone Yates :+/- 30 shots; 7 Rivers/Queer+/- 32 shots; 2 3/8" 4.7# J-55 EUE 8rd tb 2" x 1 1/2"x 16' RWBC pump C160 - Pumping Unit w/ 15 DRILLING DRILLING INS MANAGER	D' as per drilling pr s via 2 7/8" tubing ; 3,500 gallons 159 ; 4,000 gal 7.5% H og, TAC, IPC jt, SN w/ a 76 API rod do i HP electric motor EVAL	ognosis. Run & as follows: & HCL acid; 50 r CL acid; 50 mga , Desander & BP esign JATION	Cmt 5 1/2" ngal 30# lin I 30# lin 50, MA DATE DATE DATE	ear 50/50 Q C /50 Q CO2 + 1	O2 + 150N	<i>¶</i> # 12/20