CALCULATIONS OF STATIC BOTTOM-HOLE PRESSURES

Equations to Be Used:

$$P_{sfs} = P_{whs} * e^{c/\tilde{z}} + P_{1s} \text{ where: } c = (\gamma_g) \frac{(TVD)}{53.34 \text{ T}}$$

(Applied Petroleum Reservoir Engineering, Craft and Hawkings, Pg. 26)

P_{sfs} = Static sandface pressure, psia

Pwhs = Static wellhead pressure, psia

P_{ls} = Static Head of fluid column, psia

e = 2.7183

 $Y_g = Gas gravity$

TVD = True vertical depth, feet

 \bar{T} = Average Temperature, ${}^{O}R$

 \bar{z} = Average compressibility factor

Assumptions:

Patm = 14.7 psia

Temp. Grad. = 0.011 F/ft

Liquid Grad. = 0.3 psi/ft

Blinebry Zone:

 $\chi_g = 0.7023$ calculated from gas analysis

 $P_{whs} = 412 psia$

TVD = 5033 (Top of fluid)

TVD = 5600 (mid Perfs)

 $\overline{T} = (82 + 134) (0.5) = 108 \,^{\circ}F = 568 \,^{\circ}R$

 $c = \frac{(0.7023)(5033)}{(53.34)(568)} = 0.117$