| MBER OF COPI | ES AFCEIVED |
 | |----------------|-------------|------| | | RIBUTION |
 | | ANT FE | |
 | | FILE | |
 | | U. 5. G . S. | |
 | | LAND OFFICE | |
 | | TRANSPORTER | OIL | | | | GA5 | | | PRORATION OFFI | CE | | | | |
 | ## NEW MEXAGO OIL CONSERVATION COMMISSION FORM C-103 (Rev 3-55) ## MISCELLANEOUS REPORTS ON WELLS (Submit to appropriate District Office as per Commission Rule 1106) | Name of C | ompany
umble Oil & Ref | ining Compan | | Ad | dress | Habba | N M | | · | |---|---|--|---|---|--|--|---|--|----------------------------------| | Lease | ew Mexico State | | Well No. | Unit Let
K | ter Section | Townshi | | Ran | ge | | Date Work | Performed 21-60 | Pool Eumont | 1 | 1 ** | 120 | County | 22 - S | | 37-E | | | | | S A REPORT | OF: (Ch | ach abbushi | Le | ea. | | | | Begin | nning Drilling Operatio | | asing Test and | | | | (Explain): | · · · · · · · · · · · · · · · · · · · | | | Plugg | | □ Re | emedial Work | | | | (Explain): | | | | Detailed ac | ccount of work done, n | ature and quantity | of materials v | sed, and | results obta | ined. | | . | | | Sq
Ter
sho
rat
plu
369
rat
oil | ueezed perfs in 53-3642', clean ueezed perfs fr sted perfs 3573 oe & OH from 36 te 4 BPM. Perf 1g at 3665'. At 58-3662 & OH 366 te 8.5 BPM. Real & 110 bbls wat | om 3550-3623
-3650 w/3000
68-3687'. T
5½" csg fro
cidized perf
68-3687' w/1 | # for 15:
reated OH
m 3658-36
s 3658-36
0,000 gal:
load oil. | x cmt.
mins -
3670-1
62 w/2
62 w/50
s Humbl
On po | Drille no drop 3687 w/5 shots p 000 gals le Frac a | d cmt f
in pre
000 gal
er ft, | essure fel
rom 3550-30
ssure. Dri
s reg acid,
retrievable
id. Frac p | l to
626'.
illed
avg
bri
erfs | 300#.
d guide
g inj
dge | | Witnessed b | E Culsing S. | B. Carlson | Position
Fiel | d Supt | • | Company
Humble | Oil & Refi | ning | Company | | | | FILL IN BEL | ORIGIN | AL WELL | . WURK RE | PORTS O | NLY | | | | F Elev. | 386 T D | 668 | PBTD | | ······································ | Producin | g Interval | Co | mpletion Date | | Cubing Dian | neter 3 | | | 3632 | | 3573-3 | 623 | 12 | 2/20/57 | | Tubing Dian
2" | | Tubing Depth 35 | 61 | Oil S | tring Diamet
52 | | Oil Strin
3668 | | h | | Perforated I | nterval(s)
3573. | -3623 | | | | | | | | | pen Hole I | nterval | | | Produ | cing Format | ion(s) | | | | | | | | DECUI | 07 | Queen | | | | | | | Date of | Oil Production | RESULTS | | | · | | | | | Test
Before | Test | BPD | Gas Pro
MCI | | | oduction
D | GOR
Cubic feet/E | ВЫ | Gas Well Potential MCFPD | | Workover | 5/2/60 | 8 | 246 | | _ | | 29,452 | | | | After
Workover | 11/21/60 | 96 | 309 | | 110 | | 3,215 | | | | | OIL CONSERVAT | TON COMMISSION | 1 | I he | reby certify
he best of m | that the in
y knowled | formation given | above | is true and complete | | pproved by | 1. 110 | | - | Nam | e | | | . | | | itle | | 16 116 - | | Posi | tion (| -1 | 1 11 - 12 5 | ر <u>ک</u> رست.
انگرست | , | | | | | . 1 | Age | ent | | | | | | ate | | 1 . | | Comp | | 0 5 -: | | | | | | | | | nur | TOTE OIT | & Hefi | ning Compar | ĵЛ | | gangan gada Nordon 2000 of a lor , sound with help 1000 - 1000 - 100 27 Process of the second s G. B. Waranan $\phi_{\mathbf{A}}^{\mathbf{A}}(\gamma_{\mathbf{A}}^{\mathbf{A}}) = \phi_{\mathbf{A}}^{\mathbf{A}}(\gamma_{\mathbf{A}}^{\mathbf{A}}) + \phi_{\mathbf{A}}^{\mathbf{A}$ $\{c_i\}_{i=1}^{n}$ Burgan Burgan and the second s 444 1 1 and the same of th • • •