NEW MEXICO OIL CONSERVATION COMMISSION Santa Fe, New Mexico ## WELL RECORD Mail to Oil Conservation Commission. Santa Fe. New Mexico. or its proper agent not more than twenty days after completion of well. Follow instructions in the Rules and Regulations of the Commission. Indicate questionable data by following it with (?). SUBMIT IN TRIPLICATE. FORM C-110 WILL NOT BE APPROVED UNTIL FORM C-105 IS PROPERLY FILLED OUT. | <u> </u> | - | | | | | | ,
1. | : \$ | | | | |---|---|--|--|--|--|--|--|---|--|--|---------------| | | ELLY | | CONPA | | , |) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | | Tuls | s, Oklah | CMA | r.i | | J. | C.Jo | pw s or | | | 8 | in CAR 1 | of | Sec. 90 | 1dress , T | 238 | | | 37E | | | | | Skelly | | | | | | Count | | | | | | | | | | | of Sect | 1 on 20- | | | | | | | | | | | | | | : | | | | | | | | | | Address | | | | | ie Lesse | | | | ly oil | Co. | | , | Address | Pulsa G | lela. | | | rilling ed | ommend | ed S | Cabi | tom Dr | 11 ling (| Drilling | was con | npleted | ua. 11, | 1 | 44 | | | | | tor_P | . Sherp | Drillin | G. Co. | , Address | - <u>1</u> | dland, | Texas | 8. | | | | | at top of | · · · · · · · · · · · · · · · · · · · | ial until | feet. | | | | | | | | nu citrat ș | , cron in | to be kept | . confiden | The second | DS OR ZON | | 1. 1. | 19 | To the second se | ¥.7 - | | o. 1, fron | m | | t | 0 | , | | rom | | to | | | | | | | | | <u> </u> | | | | to | | 1. 1. | | o. 3, fron | m | | t | 0 | | | rom | | to | | . | | | | | | | IMPORTANT | | , | 4 | 38, | | | | | | | | | evation to w | | ose in ho | | | | | | | | | | | _to | | | , , | | | | |). 3, froi | m | | | | _to | | | feet. | | | | | o. 4, froi | nı | | | | to | | | feet. | | | | | | | | | | CASIN | G RECORD |) .
 | | 47.1 | | () | | SIZE | WÉIGH
PER FO | 17'
201' E | THREADS
PRE INCH | MAKE | AMOUNT | KIND OF SHOE | CUT & I | va | PERFORAT | | RPOSI | | 8# | 28# | 1 | 8 | 85 | 1066'3" | TP | | | ROM | то | | | | 20# | ! | 8 | SS | 35 91.13 | 77 | | | , , , , , , , , , , , , , , , , , , , | | <u> </u> | 70.00 | | | | | | | | | 4 | | | | | | | | | | | | | | eg eg e | | | y | | | | | | | | M UDI | DING AND C | edien Ting | BECOR | D [] | | | | | OLE C | SIZE OF
CASING | WHIGH | e set | O. SACKS
OF CEMEN | т метн | od used : | MU | D GRAVITY | AMOUN | T OF MUD U | SED | | 8- | 5/8"
" | 100 | | 300 - | 1 1 | bur kuit. | | 2, 14
3, 14 | N*. | | | | | | 357 | 'U' | 200 | melli | burton | | | 4.87% | AMERICA | | | | | | | | 3 | | | | | | | | | • | | | | 1 | ID ADAPTE | RS | Öl: | | | | | | 111 g M | aterial_ | | | Length_ | 4.4 | | Dep | th Set | | | | | | | | | Size | <u> </u> | | <u> </u> | 75 A 78 | | | | | | | RECO | | HOOTING (| 3 . 3 | CAL TR | EATMENT | 000 8
000 8
900 8 | | | | | | | RECO | RD OF S | HOOTING (| 3 . 3 | CAL TR | | 63.7 | | | | | -Materia | | RK(X) | | HOOTING (| OR CHIMA | CAL TR | DEPTH SE | tor DEP | TH CLEANED | | | apters- | -Materia | | RK(X) | RD OF S | HOOTING (| OR CHIMA | TE | DEPTH SE | C 3 | PH CLEANED | | | apters- | -Materia | | RK(X) | RD OF S | HOOTING (| DR CREMI | TE | DEPTH SE
OR TREAT | HOT DEPT | | out | | apters | -Materia | d used | RK(X) | RD OF S | QUANT | OR CHEMI | TE | DEPTH SE
OR TREAT | HOT DEPT | | oţi | | apters | -Materia | d used | RECO | RD OF S | HOOTING (| DR CREMI | TE | DEPTH SE
OR TREAT | HOT DEPT | | oyr | | apters | -Materia | d used | RECO | RD OF S | QUANT | DR CRIMI | TE | DEPTH SEOR TREAT | O 3 TO THE POPULATION OF P | | o o v T | | size | SHELL | d. used | RECOMMENT OF THE PROPERTY T | OSIVE OR ICAL USET. | QUANT | DR CREMI | TE | DEPTH SE OR TREAT | O 3 TO THE POPULATION OF P | | OUT | | size | SHELL | d. used | RECOMMENT OF THE PROPERTY T | OSIVE OR ICAL USET. | QUANT | DR CREMI | TE | DEPTH SE OR TREAT | HOT DEPT | | OUT | | sults of | SHELL
shootin | g or ch | RECOMMENT OF THE PROPERTY T | OSIVE OR ICAL USER | QUANT | OR CREMI | PRCIAL ubmit re | DEPTH SE OR TREAT | HOT DEPT | nd attach h | ourr | | SIZE Sults of | SHELL shootin | g or ch | RECOMMENT OF THE PROPERTY T | OSIVE OR ICAL USET | QUANT OF BRILLST In surveys we root eet to 100 | PEM AND Sere made, sused feet, offeet, | PRCIAL ubmit re | DEPTH SEOR TREAT | arate sheet a | and attach h | our | | sults of drill-sten | shootin m or oth | g or ch | RECOME RECOME AND ADDRESS OF THE R | OSIVE OR ICAL USER | QUANT QUANT QUANT TOGI eet to 3850 | OR CRIMIC
TTY DA | PRCIAL ubmit re | DEPTH SE OR TREAT | erate sheet a | and attach h | ereto | | sults of drill-sten | shootin m or oth | g or ch | emical tre | osive or ical user. | QUANT QUANT PRILLST In surveys we TOOL eet to 3850 | PEM AND S ere made, s es used feet, feet, | PECIAL ubmit repaired and from the control of c | DEPTH SEOR TREAT | arate sheet a (St feet to- (eet)to- | and attach h | ourr
lee | | sults of drill-sten tary tool te tools t to produce | shootin shootin m or oth sk were ducing | g or ch used used the first | emical tre | osive or ical user. ECORD or deviation was and | QUANT OF BRILLST In surveys we root Seet to 3858 PROL 18. | PEM AND S ere made, s S USED feet, Uction barrels of | PECIAL ubmit re , and fro , and fro practical fluid of ravity, B | DEPTH SEOR TREAT | arate sheet a Steet to teet to was | and attach h | ourr
lee | | sults of dirill-sten to product to product ulsion; | shootin shootin m or oth ls were ducing | g or chused used used the first per 24 | emical tre | osive or ical user. extment ECORD Or deviation y final for the control of | QUANT QUANT QUANT PROI Set to 10 PROI 15 % se | PEM AND S ere made, s S USED feet, Uction barrels of | PECIAL ubmit re , and fro , and fro practical fluid of ravity, B | DEPTH SEOR TREAT | arate sheet a (81 feet to feet)to | and attach h | ourr
lee | | sults of drill-sten tary toole tools product ulsion; | shootin shootin m or oth ls were ducing | g or chused used used the first per 24 | emical tre | osive or ical user. ECORD or deviation was and | QUANT QUANT PRILLST In surveys we TOOI Seet to 3858 PROL 18. | PEM AND S FEM AND S Fere made, s Feet, Jeet, Jeet, Gallons ga | PECIAL ubmit re , and fro , and fro practical fluid of ravity, B | DEPTH SEOR TREAT | arate sheet a Steet to teet to was | and attach h | ourr
lee | | sults of drill-sten tary too ble tools t to produc ulsion; gas well, ck pressu | shootin shootin m or oth ls were ducing tion of , cu, ft. ure, lbs | g or cher spectured used the first per 24. | emical tre | osive or ical user. extment ECORD Or deviation y final for the control of | PROL PROL PROL PROL PROL PROL PROL PROL | TEM AND S ere made, s S USED feet, deet, darrels of diment. Gr Gallons gr LOYFES | PECIAL ubmit remainder and from the property of the province o | DEPTH SE OR TREAT | arate sheet a Steet to teet to was | and attach h | ereto
feel | | sults of drill-sten tary toole tools t to produce ulsion; sas well, | shootin shootin m or oth ls were ducing tion of cu, ft. ure, lbs | g or cher spectured used the first per 34. | emical tre | osive or ical user. extment ECORD Or deviation y final for the control of | QUANT QUANT PROILEST TOGI Set to 3853 PROIL 18 % see | PEM AND S FEM AND S Fere made, s Feet, Jeet, Jeet, Gallons ga | PECIAL ubmit remainder and from the property of the province o | DEPTH SE OR TREAT | arate sheet a Steet to teet to was | and attach h | ourr
feet | | sults of drill-sten tary tool ble tools t to produc ulsion; gas well, ck pressi | shootin shootin m or oth ls were ducing tion of cu, ft. ure, lbs | g or cher spectured used the first per 24. | emical tre | osive or cal user. ECORD Cor deviation was and | PROLITE OF DRILL-ST on surveys we rodi eet to 101 PROL 152 W see | PEM AND S FEM AND S Feet, Feet, Journal of the control | PRCIAL ubmit regarder and from the second | DEPTH SPORTERATION OF TREATS TESTS port on sep om 385 om 4 cr 1,000 cu | arate sheet a Steet to teet to was | and attach h | ereto | | sults of drill-sten tary tool ole tools t to produc ulsion; sas well, ck pressu | shootin shootin m or oth ls were ducing ction of cu, ft. ure, lbs | g or che used used the first per 24 | emical tre | osive or ical user. ECORD or deviation and FORMA | PROLING OUTING O | PEM AND S FEM AND S Fere made, s Feet, Jeet, J | PECIAL ubmit re and fro and fro ravity, B asoline po | DEPTH SE OR TREAT | arate sheet a arate sheet a cet to cet to feet to feet to fr. of gas ft. of gas | an 12 oil | ourre tee | | sults of drill-sten tary tool ble tools t to produc ulsion; gas well, ck pressu | shootin shootin m or oth ls were ducing tion of cu, ft. ure, lbs | g or cher spectured used the first per 24 | emical tre emical tre from To from 106 24 hours water: hours in that the i | RD OF S OSIVE OR ICAL USET ECORD OF deviation FORMA nformatio | PROLING OUTING O | DR CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DE CH | PRCIAL ubmit re and fro and fro PRARII fluid of ravity, B asoline po | DEPTH SE OR TREAT | arate sheet a Steet to teet to was | an 12 oil | ereto fee | | sults of drill-sten tary too ble tools t to produc ulsion; gas well, ck pressu | shootin shootin m or oth ls were ducing tion of cu, ft. ure, lbs | used used the first per 34 | emical tre emical tre from To from Los tal tests of water: hours in can be de | SIVE OR SOLVE OR ICAL USET. ECORD OF deviation of deviation of the second seco | PROL Set to 3850 PROL 152 West to 3850 PROL 152 Marine Marine Tomation Recommendation availa | DR CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DE CH | PRCIAL ubmit re and fro and fro PRARII fluid of ravity, B asoline po | DEPTH SE OR TREAT | arate sheet a arate sheet a cet to cet to feet to feet to fr. of gas ft. of gas | an 12 oil | ereto fee | | sults of drill-sten tary too ble tools t to produc ulsion; gas well, ck pressu | shootin shootin m or oth ls were ducing tion of cu, ft. ure, lbs | used used the first per 34 | emical tre emical tre from To from 106 24 hours water: hours in that the i | SIVE OR SOLVE OR ICAL USET. ECORD OF deviation of deviation of the second seco | PRULL-ST n surveys we rodi eet to 3856 PROL 15. // se In prince Triple Tri | DR CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DE CH | PRCIAL ubmit re and fro and fro PRARII fluid of ravity, B asoline po | DEPTH SE OR TREAT | arate sheet a left to teet to teet to was ft. of gas trecord of | and attach h | ereto fee | | sults of drill-sten tary too ble tools t to produc ulsion; ck pressu | shootin shootin m or oth ls were ducing tion of cu, ft. ure, lbs | used used the first per 34 | emical tre emical tre from To from Los tal tests of water: hours in can be de | SECORD Cor deviation FORMA nformation etermined this 2 | PROL Set to 3850 PROL 152 West to 3850 PROL 152 Marine Marine Tomation Recommendation availa | DR CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DA CHEMINATE DE CH | PRCIAL ubmit re and fro and fro PRARII fluid of ravity, B asoline po | DEPTH SE OR TREAT | arate sheet a left to teet to teet to was ft. of gas trecord of | an 12 oil | ereto fee | Address___ Hobbs, New Mexico ## FORMATION RECORD | FROM | ТО | THICKNESS
IN FEET | FORMATI | QN | | |--|--|---|---|--|----------| | Tep
25 | 25
140 | 25
11 5 | Caliche
Sand | | | | 140 | 280 | 140 | Red shale | | | | 280
479 | 479
570 | 199 | Sandy shale
Red shale | | | | 570
700 | 700
855 | 130
155 | Gray sand
Red bed | | | | 855 | 1053 | 198 | Red sand & shele | | | | 1055
1 06 6 | 1046
1856 | 159 | Anhydrite | | | | 1235 | 1360 | 125 | Salt & shale | | | | 13 60
1392 | 1568
1455 | 52
65 | Anhydrite
Salt & red shale | | | | 1455
1475 | 1475 | 20
80 | Salt
Ambudrite | 350 Na | | | 1495 | 1520 | 25 | Salt | | | | 1520
1525 - J. | 1525
1570 | 5
45 | AnhydriteNews To Live Selt 1995 | | | | 1 57 0
15 8 5 | 15 8 5
1604 | 15
19 | Anhydrite
Selt | | | | 1604
1650 | 1650
1770 | 120 | Salt & potash Salt | | | | 1770 | 1785 | 15 | Salt & potash | | | | 1785
1840 | 1840 | 55
15 | Anhydrite & potash | . • | | | 1865
1860 | 1970 | 110 | Potesh, salt & anayarit | ț• | | | 1970 | 2080 | 50 | Salt & anhydrite | | | | 2080
2075 | 2075
2115 | 55
40 | Potash & ambydrite
Anhydrite & salt | | | | 21 56
2187 | 2187 | 72 | Anhydrite & potash | | | | 2205 | 2250 | 45 | Potash & anhydrite | | | | 1250
2405 | 2405
2450 | 155
25 | Salt
Ankydrite | | | | 2478 | 2478
25 67 | 48 | Anhydrite & lime
Hard brown lime | | | | 2567 | 2595 | 18 | Gray lime | | | | 2 585
2 6 00 | 2600
2615 | 3.6
1.5 | Lime
Shale | , | | | 2615
2650 | 2650
2665 | 35
15 | Sandy lime
Lime & shale | | | | 2665
2690 | 2690 | 120 | Red sandy shale & lime
Lime & anhydrite | | | | 2810 | 2835 | 25 | Sandy shale | | | | 2635-
2690 | 2925 | 55
35 | Sandy shale | | | | 2925
2938 | 2958
2950 | 13 | Lime & anhydrite | | , . | | 2950
2970 | 2970
3010 | 20
40 | Hard lime: | · · · · · · · · · · · · · · · · · · · | | | 3010 | 3025 | 16 | Hard Lime | | | | 5025
5060 | 30 6 0
3 06 5 | 85
15 | Lime
Hard lime | | | | 3085
3105 | 3105
3115 | 20 | Lime
Anhydrite | | | | 3115 | 3144
3150 | 29 | Lime
Anhydrike | | | | 5144
5150 | 3878 | 1.25 | I.i.ma | | | | 3 275
32 42 | 32 82
33 3 0 | 98 *** | Shele
Lim | | | | 3380
34 9 4 | 3404
3480 | 24
76 | Sandy shale | A Company of the Company | | | 5400 | 5004 | 44 | Line | " p Cake. | | | 3584
3608 | 360 8
364 5 | 57 | Gray lime | | | | 3645
3670 | 3 6 70 | 25
20 | Lime
Hard lime | | | | 5 69 0
37 88 | 5 788
3 805 | 98
17 | Lime & sand | | | | 3805 | 4885 | 1078 | Lime | | | | 48 8 5
48 96 | 4898
5449 | 15
551 | Limp & chert
Hard lime | | | | ** • • • • • • • • • • • • • • • • • • | 5472 | 25
396 | Lime w/ hard streaks. | | | | 5449
5478 | | | | | | | 54 76
58 62 | 58 68
5885 | 23 | Hard lime & gypsum | | | | 5479
5862
5885
6121 | 5868
5885
6121
6127 | 23
2 36
6 | Lime
Hard chalky lime | | | | 5479
5862
5886
6121
6127 | 5848
5885
6121
6127
5195 | 23
2 36 | Lime | | | | 5478
5862
5885
6121
6127
6125
6226 | 5848
5885
6121
6127
5195
6226
6370 | 23
236
6
68
31 | Lime
Hard chalky lime
Lime
Hard lime & shale
Hard lime | | | | 5478
5868
5886
6181
6187
6195
6886
6370
6403 | 5848
5885
6121
6127
5195
6226
6370
6403
6445 | 23
236
6
69
51
144
33
42 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Erown lime Hard lime | | | | 5479
5862
5886
6121
6127
6125
6226
6370
6403
6463 | 5848
5835
6127
6127
5195
6226
6370
6403
6445
6465 | 23
236
6
69
31
144
33
42
18
35 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Med, delomite Hard gray lime | | | | 5479
5862
5886
6121
6127
6125
6226
6370
6403
6463
6463
6463 | 5848
5885
6121
6127
5195
6226
6370
6403
6445
6445
6488
6554 | 23
236
68
51
144
33
42
18
35
56 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Mad, delomite | | | | 5478
5842
5846
6121
6127
6125
6270
6403
6463
6463
6463
6463
6463 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6445
6445
6455
6498
6554
6616
6659 | 23
236
6
68
31
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard gray lime Hard lime Soft lime Hard lime | | | | 5479
5862
5885
6121
6127
6125
6286
6370
6403
6463
6463
6463
6463 | 5848
5885
6121
6127
5195
6226
6370
6403
6445
6445
6445
6453
6498
6554 | 23
236
68
51
144
33
42
18
35
56
62 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard gray lime Hard lime Soft lime Hard lime Soft be hard lime | 17 3044 44 44-7 | | | 5478
5862
5865
6121
6127
6125
6226
6370
6403
6463
6463
6463
6463
6463
6463
6554
6659 | 5848
5885
6181
6127
5195
6226
6370
6403
6445
6463
6463
6463
6516
6616
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Erown lime Hard lime Hard lime Hard lime Hard lime Soft lime Hard lime Soft & Hard lime Stopped drilling Jan. depin of 6957, having | encountered no | | | 5478
5862
5865
6121
6127
6125
6226
6370
6403
6463
6463
6463
6463
6463
6463
6554
6659 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Erown lime Hard lime Hard lime Hard lime Hard lime Soft lime Hard lime Soft & Mard lime Lime Stopped drilling Jan. depin of 5957, having | encountered no | | | 5478
5862
5865
6121
6127
6125
6286
6270
6403
6445
6463
6498
6554
6616
6629
6680 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard gray lime Hard gray lime Hard lime Soft lime Hard lime Soft & Hard lime Lime Stopped drilling Jan. depth of 6957, having productive formations. back from 6957-6464 w/ 6464-6806 w/ 50 ax oem | mell was plumped
IDO ax cement,
sent, 6206-3570 w/ | j | | 5478
5862
5866
6181
6187
6195
6886
6870
6403
6445
6463
6498
6554
6616
6639
6680 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard lime Hard lime Soft lime Hard lime Soft & Mard lime Soft & Mard lime Soft & Mard lime Soft & Mard lime Lime Stopped drilling Jan. depin of 6957, having perductive formations. back from 6957-6464 w/ 6464-6806 w/ 50 sx oen mud-laden fluid, 5570- 3440-50' w/ mud-laden | mell was plumped 100 mx cement, 6806-3570' w/ 5440' w/ 45 mx cem fluid, and 50' to | /
10: | | 5478
5862
5865
6121
6127
6125
6286
6270
6403
6445
6463
6498
6554
6616
6629
6680 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard lime Hard lime Soft lime Hard lime Soft & Mard lime Lime Stopped drilling Jan. depin of 6957, having perductive formations. back from 6957-6464 w/ 6464-6806 w/ 50 sx cen mud-laden fluid, 5570- | mell was plumped in the t | 10: | | 5478
5862
5865
6121
6127
6125
6286
6270
6403
6445
6463
6498
6554
6616
6629
6680 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard gray lime Hard gray lime Saft lime Hard lime Saft lime Hard lime Saft k mard lime Lime Stopped drilling Jan. depth of 6957, having productive formations, back from 6957-6464 w/ 6464-6806 w/ 50 ax cen mud-laden fluid, 5570- 5440-50! w/ mud-laden top w/ 50 ax cement. abandoned Jan. 2, 194 rulas & regulations of | mell was plumped 100 mx cement, 5806-3570 w/ 5440 w/ 45 mx cement fluid, and 50 to Well was temporari to in accordance when the New Mexico | 10: | | 5478
5862
5885
6181
6187
6195
6886
6370
6403
6445
6463
6463
6463
6463
6463
6463
646 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Med, delomite Hard gray lime Hard lime Soft behard lime Soft behard lime Lime Stopped drilling Jan. denim of 6957, having productive formations, back from 6957-6464 w/ 6464-4806 w/ 50 ax cen mud-laden fluid, 5570- 3440-50' w/ mud-laden top w/ 50 ax cement. abandoned Jan. E, 194 | mell was plumped 100 mx cement, 5806-3570 w/ 5440 w/ 45 mx cement fluid, and 50 to Well was temporari to in accordance when the New Mexico | 10: | | 5478
5862
5865
6181
6187
6195
6886
6370
6403
6445
6463
6463
6463
6463
6463
6463
646 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard gray lime Hard gray lime Saft lime Hard lime Saft lime Hard lime Saft k mard lime Lime Stopped drilling Jan. depth of 6957, having productive formations, back from 6957-6464 w/ 6464-6806 w/ 50 ax cen mud-laden fluid, 5570- 5440-50! w/ mud-laden top w/ 50 ax cement. abandoned Jan. 2, 194 rulas & regulations of | mell was plumped 100 mx cement, 5806-3570 w/ 5440 w/ 45 mx cement fluid, and 50 to Well was temporari to in accordance withe New Mexico | 10: | | 5478
5862
5866
6181
6187
6195
6886
6870
6403
6445
6463
6498
6554
6616
6639
6680 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard gray lime Hard gray lime Saft lime Hard lime Saft lime Hard lime Saft k mard lime Lime Stopped drilling Jan. depth of 6957, having productive formations, back from 6957-6464 w/ 6464-6806 w/ 50 ax cen mud-laden fluid, 5570- 5440-50! w/ mud-laden top w/ 50 ax cement. abandoned Jan. 2, 194 rulas & regulations of | encountered no Mell was plumped 100 mx cement, 6806-3570 w/ 5440 w/ 45 mx cem fluid, and 50 to Well was temporari is, in accordance withe New Mexico ission. | 10: | | 5478
5862
5886
6181
6187
6195
6886
6870
6403
6445
6463
6498
6554
6669
6689 | 5848
5835
6121
6127
5195
6226
6370
6403
6445
6463
6463
6554
6616
6659
6659 | 23
236
6
68
51
144
33
42
18
35
56
62
43 | Lime Hard chalky lime Lime Hard lime & shale Hard lime Brown lime Hard lime Hard lime Hard gray lime Hard gray lime Saft lime Hard lime Saft lime Hard lime Saft k mard lime Lime Stopped drilling Jan. depth of 6957, having productive formations, back from 6957-6464 w/ 6464-6806 w/ 50 ax cen mud-laden fluid, 5570- 5440-50! w/ mud-laden top w/ 50 ax cement. abandoned Jan. 2, 194 rulas & regulations of | encountered no Mell was plumped 100 mx cement, 6806-3570 w/ 5440 w/ 45 mx cem fluid, and 50 to Well was temporari is, in accordance withe New Mexico ission. | 10: |