NEW MEXICO OIL CONSERVATION COMMISSION Santa Fe, New Mexico **WELL RECORD** | Gulf | | CORRECT | | | | | - | .¶ | a. r | JUF | LICAT | | |---|---|--|---|--|--|--|--|---|------------------|-----------|--|--| | | | | y or Ope | | | | T | ilsa, | Oklan
Address | 10 Max " | | | | Harr | y Lec | nard | B | Well No | 1 | in SE NE | of S | Sec | 32 | , Т | 238 | | | • | | | | | | Field, | | Lea | | | County. | | | | • | | | | | feet we | | | | se ne | • | | | | | _ | | ₹ | •• | • | • | | | | | | | | me of evation | drilling « | contractor | dre | at Wes1 | | od.
feet. | Address | Box | 1476 | | 19 38
Sa, Texas | | | | | | | | OIL SAN | DS OR ZONI | ES | , | | | | | | WATER S | | | | | | | | clude da | ata on ra | ite of wa | ter infl | ow and elev | vation to w | nich water ro | se in ho | le. | 4 | G RECORD | | | | | | | | SIZE | WEIGH
PER FO | TH TH | READS
R INCH | MAKE | AMOUNT | KIND OF
SHOE | CUT & F | | | FORATED | PURPOSE | | | 3 # | יסע איין | | | | 190'8" | | 2 11 (3) (3) | - ! | FROM | то | Wtr. Shut | | | 3/4 | 35.7 | · | | Lapw. | 2301 | Baker | | | | | | | | 7 " | 22 | #] | .0 | Smls. | 3334' | Baker | | | | | Oil Stri | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | Millor | OING AND | EMENTING | BECOP | ———↓ | | | | | | | | * | | | | | ON | | 1 | | | | | HOLE | SIZE OF
CASING | WHERE | | NO. SACKS
OF CEMEN | | IOD USED | MU | D GRAVI | ITY . | AMOUNT | OF MUD USED | | | /2" | 13"
0-3/4 | 190¹
230¹ | 1 | 190
100 | | burton
burton | | | | · L. | | | | /1 ₄ m | 7* | 334 | 1 | 500 | | burton | | | | | | | | | | | | | | | ļ | | | · | | | | eaving | nlugM | aterial | | | | ND ADAPTE | | | Depth Se | st | | | | _ | _ | | | | | | | | | | | | | | | | RECO | ORD OF S | HOOTING | OR CHEMI | CAL TE | REATME | ENT | | | | | aran | CHIME | , rom | EXP | LOSIVE OR | OR | | | DEPTH SHOT OR TREATED I | | DWDGAY | DEPTH CLEANED OUT | | | SIZE
5# | | r ased | | o Hour | | t. 9-7 | TE
ZQ | 1 | | DEFIN | CLEANED OUT | | | ラ¨ | 7 | U , | | omb | q | •1:P | - | 3505' | 5951 | | | | | | | | | ¥5 | <u> </u>
 | | · · · · · · · · · · · · · · · · · · · | | | 4 | | | | . <u></u> . | f shootir | g or che | mical t | reatment
Flow | | throug | _ | - | | | | | | esults o | | | | <u> </u> | | | | | | | | | | esults o | | | | | | | | TESTS | | | | | | esults o | | | | RECORD (| OF DRILLE-S | TEM AND S | PECIAL | | | | | | | | em or ot | her speci | | | | | | eport on | separate | sheet and | d attach hereto. | | | drill-st | | • | al tests | or deviation | on surveys v | vere made, s | ubmit re | • | • | | | | | drill-st | ools wer | e used fr | al tests | or deviation | on surveys v TOO eet to 361 | were made, so USED | ubmit re | rom | | feet to | feet | | | drill-st | ools wer | e used fr | al tests | or deviation | TOC
eet to 361
eet to 230 | were made, so USED | ubmit re | rom | | feet to | | | | drill-st | ools were | s used for used for Sept. | al tests | or deviation of deviation of the state th | TOC
eet to 361
eet to 230
PRO | vere made, so the blue s | ubmit re | rom | | feet to | feet | | | drill-st otary to oble too ut to pr ne produ | ools were ols were coducing | e used for used for used for the first | en lests com com com com com com com com com co | or deviation of deviation of the second t | TOC
eet to 361
eet to 230
PRO
,19_3
7-1/2 | vere made, so the second secon | ubmit re | rom | | feet to | feetfeetfeet | | | drill-st otary to other too note to pr ne production | ools were ols were coducing_ uction of | e used for used for sept. the first | om com com com com com com com com com c | or deviation of the state th | TOC
eet to 361
eet to 230
PRO
,19_3
7-1/2 | vere made, s LS USED feet feet DUCTION barrels of | ubmit re , and fr , and fr fluid of ravity, I | rom
rom
which | | feet to | feet | | | drill-st otary to table too ut to pr ne produ | ools were coducing_ uction of | sept. Sept. the first per 24 l | om | or deviation of deviation of the second t | TOC
eet to 361
eet to 230
PRO
,19_3
7-1/2 | Vere made, so the second secon | ubmit re , and fr , and fr fluid of ravity, I | rom
rom
which | | feet to | feetfeetfeet | | | drill-st otary to table too ut to pr ne produ | ools were coducing_ uction of | sept. Sept. the first per 24 l | om | or deviation of deviation of the second t | TOC eet to 361 eet to 230 PRO ,19 3 7-1/2 | Vere made, so the second secon | ubmit re , and fr , and fr fluid of ravity, I | rom
rom
which | | feet to | feet | | | drill-st otary to table too nt to pr ne production gas we ook pre | ools were ols were coducing uction of the cu, ft. | Sept. the first per 24 ts. per sq. | om | or deviation of deviation of the second t | TOC eet to 361 eet to 230 PRO ,19 3 7-1/2 % s EM | were made, s LS USED 5 feet COUCTION B barrels of dediment. G Gallons g PLOYEES | and from the state of | which_per 1,000 | eu. ft. c | feet to | feet feet il; % | | | drill-st otary to oble too ut to pr ne produulsion gas we ook pre | ools were ols were coducing uction of the cu, ft. | Sept. the first per 24 ts. per sq. | om | or deviation of deviation of the second t | TOC eet to 361 eet to 230 PRO ,19 3 7-1/2 % s EM | were made, s LS USED 5 feet COUCTION B barrels of dediment. G Gallons g PLOYEES | and from the state of | which_per 1,000 | eu. ft. c | feet to | feetfeet il;% | | | drill-st otary to table too nt to pr ne production gas we ook pre | ools were ols were coducing uction of the cu, ft. | Sept. the first per 24 ts. per sq. | om | or deviation of the second | PRO | were made, s LS USED 5 feet COUCTION B barrels of dediment. G Gallons g PLOYEES | and from the state of | which_Beper 1,000 | eu. ft. c | feet to | feet feet il; % | | | drill-st otary to table too ut to pr ne production gas we ook pre | ools were oble were coducing uction of the cu, ft. ssure, lb. Ful | Sept. the first per 24 ls. per sq. | eal tests com 24 hour water; hours in. | or deviation of deviation of the state th | PRO | were made, s LS USED 5 feet feet DUCTION Callons g PLOYEES Her CORD ON O | ubmit re , and fr , and fr fluid of ravity, I asoline p C.P. Georg | which_Be_per 1,000 | o cu. ft. c | feet to | feet feet il; % | | | drill-st otary to ble too ut to pr ne production gas we book pre | ools were oble were coducing uction of the cu, ft. ssure, lb. Ful | Sept. the first per 24 ls. per sq. | eal tests com 24 hour water; hours in. | or deviation of deviation of the state th | PRO | were made, s LS USED 5 feet CORD ON O | ubmit re , and fr , and fr fluid of ravity, I asoline p C.P. Georg | which_Be_per 1,000 | o cu. ft. c | feet to | feet feet il; % Driller Driller | | | drill-st tary to ble too to produce production gas we book pre | ools were ools were coducing uction of it, cu, ft. ssure, lb. Full swear or ne on it : | se used for used for used for the first when the first so per 24 for the first so far as | om | or deviation of deviation of the state th | PRO | JES USED 5 feet feet DUCTION Barrels of Dediment. G Gallons g PLOYEES Her CORD ON O rewith is a | ubmit re , and fr , and fr fluid of ravity, H asoline p C.P. Georg | which_Beper 1,000 Alexa SIDE e and co | o cu. ft. o | feet to | feet feet il; % Driller Driller | | | drill-st otary to ble too ut to pr ne production gas we ock pre | ools were oblawere or oducing uction of the cu, ft. ssure, lb. Tul | Sept. the first per 24 l s. per sq. | eal tests com 24 hour water; cours in. chat the can be | FORM determined the this | PRO | were made, s LS USED 5 feet feet DUCTION Compared of sediment. Get Gallons g PLOYEES Her CORD ON Our or with is a lable records Tule | and from the fluid of ravity, I asoline processing the second sec | which_Beper 1,000 Alexa SIDE e and co | o cu. ft. o | feet to | feet feet il; | | Representing Gulf Oil Corporation Company or Operator Tulsa, Oklahoma My Commission expires of jurch 16, 1940 ## FORMATION RECORD | FROM | то | THICKNESS
IN FRET | FORMATION | |--------------|---|----------------------|--| | 0, | 10' | | Collon | | | | | Cellar
Calione | | | 45
59 | I MARKET AND INC. | Sand & shells
Sand | | | 90
95 | | Sand & lime
White lime | | | 20
45
59
90
95
150
190
215 | | Sand | | 1. | 190
215 | | Sand shells | | | 1455
589 | | Red mud
Red bed
Shale & sand | | | 520 | · | Sand Red bed & sand | | | 615
682 | | Hard sand | | | 784
865 | | Hard sand & shale
Sand & red rock | | | 996
1011 | | Anhydrise & red rock
Red bed & shale | | | 1145 | | Red rock & shale, streaks of anhydrite | | | 1220
1275 | 1.00 | MILLYCEPIER | | | 1275
1400
1451
1553 | | Broken anhydrite
Salt
Red bed & shale | | | 1553 | S | Red bed & salt - anhydrite shells | | | 1500 | | Annydrite
Selt | | | 1645
1662 | | Salt & anhydrite Red rock & shale Salt & shells | | | 1845
1870 | | Salt & shells | | | 1889 | | Anhydrite 1977 197 | | | 1915
2008 | | Salt & anhydrite
Salt | | | 2100
2145 | | Salt & potash
Anhydrite & gyp | | | 2183 | | | | , | 2 205
2342 | | Anhydrite
Salt & anhydrite | | | 2355
2363 | | Anhydrite & gyp
Anhydrite | | | 2535 | | Salt & shells | | | 5975
5275 | | Gyp and anhydrite
Anhydrite, gyp & shells | | | 2682
2690 | | Ambydrite & gyp
Anbydrite & brown lime | | | 2698
2720 | | Lime & sand, small show of gas
Brown lime and anhydrite | | | 2745 | | Brown lime | | | 2783
2 8 21 | | Broken lime
Top white lime | | | 2 8 75
2 8 95 | | Lime
Brown lime & white orystals | | | 2918
2961 | | White lime & anhydrite | | | 2973 | | Lime & anhydrite Lime | | | 301 8
3051 | 1 | Gray lime Sandy lime | | | 3076
3 0 77 | | Line | | *** | 3106 | | Brown lime | | | 3177 | | Lime
Brown lime | | | 3215
3242 | | Lime
Brown lime | | | 3279
3301 | | Lime
Brown lime | | | 3328 | | Line | | | 2227
3338 | | Lime & gyp | | | 3350
3366 | | Brown lime | | | 3375 | | Whitesandy lime | | | 3427 | | Brown lime White lime | | | 3435
3445 | | White sandy lime This lime | | | 3455
3465 | | Brown lime
White sandy lime | | | ¥73 | | Brown lime | | | 3492 | | Line
Sand - gas | | | 3505
3510 | | Lime & sand.
Sand | | | 3521
3540 | | Lime
Broken lime | | | 3563 | | Litma A sand | | MORAL STREET | 360 8 | | Lime & streaks of Sand
Lime | | TOTAL DEPTH | 3615 | | Broken lime | | | | | | | | | | e de la companya de
La companya de la co | | | | | | | | . : . | | $(1+\epsilon_{ij})^{-1}$ and $(1+\epsilon_{ij})^{-1}$ | | | | | at the state of th | | | | | | | · | | • | | | | | | | | : | | | en e | | | | | and the second of o | | | | | |