| Poo | ı Jal ı | ıat | | MULT | I-POINT | BACK PRE | ESSURE 1 | ION COMMIS | ising of the control | | Form C-12 Revised 12-1-5 | | |---|--|---|--|---|--|---|---|--|---|-----------------------------|--|--| | | | | | | | | | | | | 11-23-56 | | | Com | pany Amera | da Pet | roleu | n Corpo | ration | Lease | A.G. F | alby | Date of | lest | 2 | | | | | | | | | | | | | | ipeline Co. | | | | ing <u>5-1/2"</u> | | | | | | | | | | | | | | ing 2-3/8" | ess. <u>13,2</u> | | | | ducing Thru | | | | | | S | ingle-Brad | enhead_C | Cond | C O Days | | | Date | e of Comple | ecton: | Seeffe | 26 | Packe | | | | oir Temp. | 8601 | <u> </u> | | | | | | | | | | VED DAT. | A | | | | | | Test | ed Through | | | | (Meter) | Σ | | | Type Tar | os | Pipe | | | $\overline{}$ | (Protes) | | Flow I | ata
Press | . Diff. | Temp. | | ng Data
s. Temp. | Casing I | | P | | | No. | (Line)
Size | (Òri | fice)
Size | | | | | | Press. | Temp. | Duration of Flow | | | SI | 2126 | | | psig | h _w | °F. | psig | g °F. | psig | °F∙ | Hr. | | | 1. | 44 | 1. | 25 | .,, | | <u> </u> | | | 665.1 | | 72-3/4 Hr. SI
Proze Off | | | 2. | 48 | 1.3 | | 465.0
474.5 | 9.6
15.2 | 106 5 | | | 626.2
531.0 | ļ | 22 | | | 2.
3.
4.
5. | 4* | 1,2 | | 464.0 | 26.1 | 680 | | | 488.9 | | 24
24-1/4 | | | | | | | | <u>L.,</u> | | | _ <u></u> | <u> </u> | <u> </u> | L | | | | Coefficient | | | Pr | | FLOW CALCULATI Flow Temp. | | ONS
Gravity | Compress. | | Rate of Flow | | | io. | | | √ h _w | De l | psia | | tor | Factor | Factor | | Q-MCFPD
@ 15.025 psia | | | | 10.24 | | IV W | 1 | | | t l | F _g | Fpv | | e 17.025 ps1a | | | l. | 10.24 | | | f | 1 | | | 0.9535 | l l | | | | | 2. | 10.24 | | 67.7 | | 78.2 | 0.95 | | 0.9535 | 1.03/ | | 656 | | | 2 .
3. | 10,24
10,24 | | 86.1 | 0 4 | 87.7 | 0.979 | 95 | 0.9535
0.9535 | 1.042 | 2 | 8 58 | | | 2 . | 10.24 | | | 0 4 | | | 95 | 0.9535 | | 2 | | | | 2 . | 10,24
10,24 | | 86.1 | 0 4 | 87 . 7
77 . 2 | 0.979 | 95
24 | 0.9535
0.9535
0.9535 | 1.042 | 2 | 858 | | | 2. 3. 4. 5. Li | 10.24
10.24
10.24 | ocarbor | 86.1
116.6 | Dr. | 87.7
77.2 | 0.979 | 95
24
ALCULAT | 0.9535
0.9535
0.9535 | 1.046 | | 858
1131 | | | as Li | 10.24
10.24
10.24
iquid Hydro | ocarbor
id Hydr | 116.6 | Dr. | 87.7
77.2 | 0.975
0.992
ESSURE CA | 24
ALCUIAT | Q.9535 Q.9535 Q.9535 TIONS Speci | 1.046 1.046 fic Gravit | ty Sepa | 858
1131
rator Gas -
ing Fluid - | | | 2. 3. 4. 5. 5. Li | 10.24
10.24
10.24 | id Hydr | Ratio | Dr. | 97.7
77.2
PRI | 0.975
0.992
ESSURE C. | 24
ALCUIAT | Q.9535 Q.9535 Q.9535 TIONS Speci | 1.046 1.046 fic Gravit | ty Sepa | 858
1131
rator Gas - | | | 2. 3. 4. 5. as Li ravit | 10.24
10.24
10.24
iquid Hydro
by of Liqui
1.793 | M ₂ - | 86.1
116.6
n Ratio | Dr. | PRI
70.141 | O.975
O.992
ESSURE C.
cf/bbl.
deg. | 24
ALCUIAT | 0.9535
0.9535
0.9535
TIONS Speci
Speci | fic Gravit | Ly Sepa | 858
1131
rator Gas
ing Fluid | | | 2. 3. 4. 5. As Licavit | 10.24
10.24
10.24
iquid Hydro
y of Liqui
1.793 | id Hydr | Ratio | Dr. | 97.7
77.2
PRI | O.975
O.992
ESSURE C.
cf/bbl.
deg. | 24
ALCUIAT | Q.9535 Q.9535 Q.9535 TIONS Speci | 1.046 1.046 fic Gravit | ty Sepa
ty Flow
Pc 46 | 858
1131
rator Gas -
ing Fluid - | | | 2. 3. 4. 5. In as Li cavit | 10.24
10.24
10.24
iquid Hydro
by of Liqui
1.793
- 1.98% | M ₂ - | Ratio | Dr. | PRI
77.2
PRI
7.141 | 0.975
0.992
ESSURE C.
cf/bbl.
deg. | 24
PALCUIAT | 0.9535
0.9535
0.9535
Pions
Speci
Speci
Pc_
Pw ²
460.1 | fic Gravit
fic Gravit
578.3 | ty Sepa | rator Gas - ing Fluid Fl | | | as Liravit | 10.24
10.24
10.24
10.24
iquid Hydro
by of Liqui
1.793
- 1.98%
Pw
Pt (psia)
639.4
544.2 | M ₂ - P _t | 116.6
Ratio | Dr. | PRI
(F _c Q) ²
1.383
2.365 | 0.973
0.992
ESSURE C.
cf/bbl.
deg.
(F.
(1- | 24. ALCUIAT cQ) ² -e-s) 950 | O.9535
O.9535
O.9535
TIONS
Speci
Speci
Pc | fic Gravit | ty Sepa
ty Flow
Pc 46 | rator Gas - ing Fluid - io.1 | | | 2. 3. 4. 5. Sas Li cavit | 10.24
10.24
10.24
iquid Hydro
y of Liqui
1.793
- 1.98%
P _w
Pt (psia)
639.4 | M ₂ - P _t | 116.6
Ratio | Dr. Dr. Dr. Q | PRI
77.2
PRI
70.141
(F _c Q) ² | 0.973
0.992
ESSURE C.
cf/bbl.
deg.
(F.
(1- | 24
ALCUIAT
cQ) ²
-e-s) | 0.9535
0.9535
0.9535
TIONS Speci
Speci
Pc | fic Gravit
fic Gravit
578.3 | Ca. P. | rator Gas - ing Fluid - io.1 | | | 2. 3. 4. 5. as Liravit | 10.24
10.24
10.24
10.24
iquid Hydro
by of Liqui
1.793
- 1.98%
Pt (psia)
639.4
544.2
502.1 | M ₂ - P _t 408.8 296.2 252.1 | 86.1
116.6
116.6
1.18% | Dr. | PRI
77.2
PRI
7.141
(F _c Q) ²
1.383
2.365
4.113 | 0.973
0.992
ESSURE C.
cf/bbl.
deg.
(F.
(1-
0.1
0.3
0.5 | cQ) ² -e ^{-s}) 950 9355 | O.9535
O.9535
O.9535
TONS
Speci
Speci
Pc | 1.046 1.046 fic Gravit 678.3 P _c -P _w 51.1 163.6 | Ca. P. 639.5 | rator Gas - ing Fluid - io.1 1. Pw Pc | | | 2. 2. 3. 4. 5. 5. 15. 15. 15. 15. 15. 15. 15. 15. | 10.24
10.24
10.24
10.24
iquid Hydro
by of Liqui
1.793
- 1.98%
Pt (psia)
639.4
544.2
502.1
ute Potent | Pt 408.8 296.2 252.1 | Ratio | Dr. | PRI
77.2
PRI
70.141
(F _c Q) ²
1.383
2.365
4.113 | 0.973 0.992 ESSURE C. cf/bbl. deg. (F. (1- 0.1 0.3 0.5 | cQ) ² -e ^{-s}) 950 9355 | O.9535
O.9535
O.9535
TONS
Speci
Speci
Pc | 1.046 1.046 fic Gravit 678.3 P _c -P _w 51.1 163.6 | Ca. P. 639.5 | rator Gas - ing Fluid - io.1 1. Pw Pc | | | CO ₂ Jo. bsolution DDRE: | 10.24
10.24
10.24
10.24
10.24
iquid Hydro
y of Liquid
1.793
- 1.98%
Pw
Pt (psia)
639.4
544.2
502.1
ute Potent
NY
SS I
and TITLE | Pt 408.8 296.2 252.1 ial: Amerada Trawer W.G. | 86.1
116.6
116.6
1.18%
F. 1.
1. 2.0
1. 2.0 | Dr. | PRI
(F _c Q) ²
1.383
2.365
4.113 | 0.973 0.992 ESSURE C. cf/bbl. deg. (F. (1- 0.1 0.3 0.5 | c ^Q) ² -e ^{-s}) 95 95 24 24 24 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27 | O.9535
O.9535
O.9535
TONS
Speci
Speci
Pc | 1.046 1.046 fic Gravit 678.3 P _c -P _w 51.1 163.6 | Ca. P. 639.5 | rator Gas - ing Fluid - io.1 Pw Pc | | Restet: Only three data points obtained due to first note freezing off. Average slope drawn through the three data points to submitted to the commission. ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q = Actual rate of flow at end of flow period at W. H. working pressure (P_W) . MCF/da. @ 15.025 psia and 60° F. - PcI 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - Pr Meter pressure, psia. - hw Differential meter pressure, inches water. - F_g : Gravity correction factor. - Ft Flowing temperature correction factor. - F_{pv} Supercompressability factor. - n _ Slope of back pressure curve. - Note: If $P_{\mathbf{W}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{W}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.