NEW MEXICO OIL CONSERVATION COMMISSION Form C-122 1957 APR 2: 53 Revised 12-1-55 MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS Pool Jalmat Formation Yates County Lea Annual______Special_____Date of Test_____2-11 to 2-15-57 Initial_____ Lease_____Hadfield Well No._____2 E. G. Rodman Company___ Unit _____ Sec. ____ 21_{Twp}____ 25S Rge. ____ 37E Purchaser ___El Paso Natural Gas Casing_____To_____Set at___3081 Perf._____To_____3040_____ Tubing_____Wt.____I.D.____Set at_____Perf._____ То_____ Gas Pay: From 2990 To 3040 L 2990 xG .655 GL 1958 Bar. Press. 13.2 Type Well Producing Thru: Casing * Tubing _____ Type Well _____ Single-Bradenhead-G. G. or G.U. Dual Date of Completion: 3-30 49 Packer none Reservoir Temp. OBSERVED DATA Type Taps_____ Tested Through (Prover) (Choke) (Meter) Tubing Data Casing Data Elow Data FLOW CALCULATIONS Rate of Flow Compress. Gravity Flow Temp. Pressure Q-MCFPD Coefficient Factor Factor Factor @ 15.025 psia Fpv No. Fg F_t psia / h_wpf (24-Hour) -1.026 317 .9571 9952 52.90 6.135 1. 1.024 430 9571 1.0029 71.26 6.135 2. 517 1.023 9571 1.0019 6,135 85.88 1.024 631 9571 1.0029 6.135 104.68 PRESSURE CALCULATIONS Specific Gravity Separator Gas_ ____ cf/bbl. Specific Gravity Flowing Fluid_ Pc_____Pc____Pc____Pc_____Pc_____Pc_____Pc_____Pc_____Pc_____Pc_____Pc_____Pc_____Pc_____Pc_____Pc___Pc____Pc___Pc____Pc___Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc____Pc___Pc____Pc____Pc____Pc___Pc___Pc____Pc____Pc____Pc____Pc___Pc____Pc___Pc____Pc____Pc___Pc___Pc___Pc___Pc____Pc___Pc____Pc____Pc____Pc____Pc__Pc___Pc___Pc___Pc__Pc___Pc__Pc___Pc___Pc__Pc___Pc___Pc___Pc__Pc___Pc__ Gas Liquid Hydrocarbon Ratio___ Gravity of Liquid Hydrocarbons Fc______9583 (1-e^-8) __deg. . 126 P_W P_C $P_c^2 - P_w^2$ $(F_cQ)^2$ Cal. Pw P_w2 $(F_cQ)^2$ P_t^2 FcQ Pw $(1-e^{-s})$ No. Pt (psia) 84.0 $\frac{221,2}{178,3}$ 91.5 .011 <u>304</u> 412 . 092 221. 470.Z 75.4 134-4 021 .170 178.3 422.2 67.8 143.8 168.9 245 031 . 495 143.8 379.2 55.9 214.6 -046 -98.1 _366 605 98.1 313.2 4. 865 MCFPD; n_811 Absolute Potential:_ COMPANY E. G. Rodman Lodman East Box 591 ADDRESS AGENT and TITLE Earl Rodman, Engineer

ELVIS A. UTZ GAS ENGINEER

		Flow Data						D	Temp.	Duration
	(Prover)	(Choke)	Press.	Diff.	Temp.	Press.	Temp.	Press.		of Flow
No.	(Line)	(Orifice)	psig	h _w	°F.	psig	°F.	psig	^o F•	Hr.
	Size	Size	pare	W				546		72
SI			- 344	10.9	65			457	+	
1.	4	1.000	244					409	_	
2.	4	1.000	227	_ 21.2		1		363-		
3.	4	1.000	214	32.5		+		300		
	4	1.000	224	46.2						
<u>4.</u> 5.				L		-l	<u></u>			

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q = Actual rate of flow at end of flow period at W. H. working pressure (P_w). MCF/da. @ 15.025 psia and 60° F.
- P_c : 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater.
- Pw⁻ Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- P_{f} Meter pressure, psia.
- h_w Differential méter pressure, inches water.
- F_g : Gravity correction factor.
- F_t Flowing temperature correction factor.
- F_{pv} : Supercompressability factor.
- n _ Slope of back pressure curve.
- Note: If P_W cannot be taken because of manner of completion or condition of well, then P_W must be calculated by adding the pressure drop due to friction within the flow string to P_t .