NEW MEXICO OIL CONSERVATION COMMISSION Santa Fc, New Mexico 000 WELL RECORD 0 02 | The Atla Vell No. 6 (1 Vell is 1650 Section 2 rilling Comment ame of Drilling | (F)
(+++++++++++++++++++++++++++++++++++ | fining George
opany or Operator)
in SE // | | | | • | | |--|---|---|----------------------------|-----------------|------------------------|-------------------|----------------------------| | ell No. 6 (1 Indexigne ell is 1650 Section 2 rilling Comment ame of Drilling | (F)
(+++++++++++++++++++++++++++++++++++ | in SE // | | | | | | | ell No. 6 (1 Indexigne ell is 1650 Section 2 rilling Comment ame of Drilling | (F)
(+++++++++++++++++++++++++++++++++++ | in SE // | | | | State Y | | | ell is 1650 Section 20 rilling Commence ame of Drilling |)
(| lect from | of | | | | | | Section | <u> </u> | | | | | | | | Section | <u> </u> | | #2.x24.4.1.12
********* | | | | Coun | | rilling Commenc | | | | | | | | | ame of Drilling | ad 🗲 | - | | | | | | | evation above se | a level at To | op of Tubing Hea
19 | ud | L | The inf | ormation given is | to be kept confidential us | | | | L | J | | | | | | | | | OIL | SANDS OR Z | ones | | | | | | | | | | | 3 0 | | | | | | | | | :O | | o. 3, from | | to | **** | No. 6 | , from | | : 0 | | | | | TMPOR! | TANT WATER | . SANDA | | | | iclude data on r | ate of water | inflow and eleva | | | | | - | | | | | | | | feet | | | - | | | | | | | | | | | | | | | | | | • | | | | | | | | | • | | | | r | | | | | | | 1 | | CASING RECO | - | | | | SIZE | WEIGHT
PER FOOT | NEW OR
USED | AMOUNT | KIND OF
SHOE | CUT AND
PULLED FROM | PERFORATION | s PURPOSE | | 13-3/8 | 784 | New | 532.59 | Leritin | | | Surface | | 9-5/1 | 364 A 32
234 A 29 | *** | 3320.66 | Larkin | - | 8232-49 | Intermediate | | 23 | UF & 21 | | 8201.18 | 7.55 | | - VAJA-W | Tubing | | | | , | | | | | · — | | | | | MUDDING | | ING RECORD | | | | | | | | METHOD | | | | | | ZE OF
ASING | | no. Backs
of Cement | USED | 0 | MUD | AMOUNT OF
MUD USED | | | | | 350 | | 0 | | | | | | | F CEMENT | USED | 0 | | | Depth Cleaned Out..... ## TOOLS DEED | | | | | | | | | | | | . f | |---|--|--|--|----------|---|----------------------|------------------------------|----------------|---|----------------|--| | ble tools w | ere used fi | om | | ieet t | o | feet, ar | nd from | | f | eet to | f | | | | | | | PROI | UCTION | | | | | | | t to Produ | cing. | pril 16, | 1959 | ••••• | 19 | | | | | | * | | L WELL: | The pro | duction du | ring the first 2 | 24 hoi | urs was 11 | 6.9h | har | rels of lic | mid of wh | sich | 98 % | | | | | * | | | | | | | | Ť. | | | | | | | | | .% water | ; and | ***************** | % w | as sediment. A. | | | Gravity. | | .a.l. | •••••• | *************************************** | | | | | | : | | S WELL: | The pro | duction dur | ing the first 2 | 4 hou | irs was | | M,C.F. pl | us | | ······ | barrels | | | liquid H | lydrocarbon | . Shut in Pres | surc | lt |)8. | | | | | - | | ngth of Ti | ime Shut is | 3 | | | *************************************** | | | | | | The second second | | 4 | | | | | | | | | | | | | FLEASE | INDICA | | w FURMAT.
utheastern N | | | NFORMAN | E WITE | I GEOGI | | | N OF STATE | | Anhy | ••••• | | | | · | | | Т. | | | w Mexico | | | - 4 | | | T. | | | | | | | | | Salt | ,
 | | | T. | Montoya | 6914 | | Т. | | | | | | | | • | T. | | _ | | | | | | | | | | | T. | | _ | | | | | •••• | | | | | | T.
T. | Ellenburger Gr. Wash | _ | | | | | | | | | | *************************************** | T. | | | | | | | · | | | | | | | *************************************** | | | | | | *************************************** | | | • - | - • | ••••••• | T. | ****************** | | | т. | Penn | •••••• | ÷ | | | | | ******* | | ****************** | | | | | | *************************************** | | | | | | | | | | | | | •••••• | | | | | | | *************************************** | | | | | | | | _ | | - - | | 1. | FORMATION | | | 1, | *************************************** | | ·•···· | | seel ma | Thic | kness | | | | | • | Thickness | | | | | | in in | Feet | | matio | on | From | То | in Feet | | Forma | ition | | | | 86 Red
26 " | Bed
* & Ai | ahw | | 7810
7864 | 786k | 27 | Lime | k Sand | | | 112 | 363 | 51 " | * | - J | | 7909 | 7938 | 29 | 1 | k Shale | | | | | 87 Anh | | | | 7938 | 7996 | 58 | | | • | | | | 45 Red
22 Amb | Bed
Y | | | 7996
8015 | 8015 | 19 | | k Shale | :
 | | | | | • | | | | 3554 | ! 194€ | | | | | | 6kg 7 | 32 " | & Salt | | | 8058 | 8126 | 43
68 | | Shale | | | 19 1 | 816 | .67 * | | | | 8058
8126 | 8126 | 68
40 | Sand | | | | 149 1
116 2 | 816
212 | .67 * | & Gyp | | | 8058
8126
8166 | 8126
8166
8250 | 97
70
98 | Line | k #
k Shale | | | 149 1
116 2
112 2
187 2 | 816 1
212 1
287
803 5 | 67 **
96 **
75 Gyp | & Gyp | | | 8058
8126 | 8126 | 68
40 | Line | | | | 149 1
116 2
112 2
187 2
103 2 | 816 1
212 3
287
903 5 | .67 "
196 "
75 Gyp
116 Amh
71 Lin | & Gyp y & Gyp o & Gyp | | | 8058
8126
8166 | 8126
8166
8250 | 97
70
98 | Line | k #
k Shale | The second of th | | 116 2
116 2
112 2
187 2
103 2
174 3 | 816 1
212 3
287
803 5
874
006 1 | 67 " 96 " 75 Gyp 16 Amh 71 Lim 32 Anh | & Gyp & Gyp & Gyp | | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The second secon | | 149 1
116 2
12 2
187 2
103 2
174 3
106 3
106 3 | 816 1
212 3
287 903 5
874 006 1
106 1 | 67 " 96 " 75 Gyp 26 Anh 71 Lim 32 Anh 80 Anh | & Gyp & Gyp & Gyp & Gyp y & Gyp | | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The second of th | | 149 1
14 2
12 2
87 2
87 2
03 2
71 3
06 3
06 3
86 6 | 816 1
212 3
287 603 5
874 606 1
106 1
186 914 37 | 67 " 96 " 75 Gyp 16 Anh 71 Lim 32 Anh 80 Anh 28 Lim | & Gyp o & Gyp o & Gyp y & Gyp o | | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The state of s | | 116 21
116 22
12 22
187 28
103 22
171 33
106 33
106 33
114 66 | 816 1
212 3
287 603 5
874 006 1
106 1
186 914 37 | 75 Gyp 76 Anh 71 Lim 32 Anh 80 Lim 52 Lim | & Gyp o & Gyp o & Gyp y & Gyp o | b | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The contraction of contracti | | 149 1
16 2
12 2
187 2
103 2
74 3
106 3
106 3
14 6
66 6
91 7 | 816 1
212 3
287 803 5
674 006 1
106 1
186 914 37
966 991 062 | 67 " 96 " 75 Gyp 16 Anh 71 Lim 32 Anh 00 Lim 80 Anh 528 Lim 52 " 71 " | & Gyp o & Gyp o & Gyp y & Gyp o | | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The second of th | | 116 21
116 21
117 21
187 21
21
21
21
21
21
21
21
21
21
21
21
21
2 | 816 1
212 3
287 603 5
874 006 1
106 1
186 914 37
966 991 062 122 | 67 196 196 196 196 196 199 1 | & Gyp & Gyp & Gyp & Gyp & Gyp & Gyp & Gheri & Cheri | b | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The contraction of contracti | | 116 21
116 21
1187 21
103 21
1714 33
1714 33
1714 34
106 31
106 31
106 64
106 64
106 64
106 77
106 77
106 77
106 77 | 816 1
212 3
287 603 5
874 006 1
106 1
186 914 37
966 991 062 122 158 | 75 Gyp 76 Anh 71 Lim 32 Anh 80 Anh 28 Lim 52 ** 71 ** 60 ** | & Gyp & Gyp & Gyp & Gyp & Gyp & Gheri & Gheri & Gheri | t. | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The second of th | | 149 116 2167 2167 2167 2166 3166 666 666 666 7162 71558 7155 | 816 1
212 3
287 603 5
874 006 1
106 1
106 1
106 37
966 991 062 122 122 123 158 158 158 215 | 75 Gyp 76 Anh 71 Idm 32 Anh 30 Idm 50 Idm 52 ** 71 ** 60 ** 36 ** 30 ** | & Gyp & Gyp & Gyp & Gyp & Gyp & Gyp & Gheri & Cheri | t. | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The second of th | | 149 14 15 16 17 16 17 17 17 17 17 | 816 1
212 2
87 603 5
874 006 1
106 1
106 3
106 3
106 3
158 158 158 158 158 158 158 158 158 158 | 67 " 96 " 75 Gyp 16 Anh 71 Lim 32 Anh 80 Anh 28 Lim 52 " 71 " 60 " 36 " 37 " 14 " | & Gyp & Gyp & Gyp & Gyp & Gheri & Gheri & Shale | t
t | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The residence of re | | 149 12
116 22
187 22
187 23
174 33
174 33
186 66
186 66
186 66
186 77
182 77
188 77 | 816 1
212 2
87 603 5
874 006 1
106 1
106 3
106 3
106 3
158 158 158 158 158 158 158 158 158 158 | 75 Gyp 76 Anh 71 Idm 32 Anh 30 Idm 50 Idm 52 ** 71 ** 60 ** 36 ** 30 ** | & Gyp & Gyp & Gyp & Gyp & Gheri & Gheri & Shale | t
t | | 8058
8126
8166 | 8126
8166
8250
8280 | 97
70
98 | Line | k #
k Shale | The respect to the second seco | Company or Operator. The Atlantic Refining Company Address Box 1038 DenverCity, Texas Name. District Superintendent Name. Position or Title District Superintendent