

August 18, 1997

GOV-STATE AND LOCAL GOVERNMENTS

Application to Fracture the West Dollarhide Drinkard Well #146 WIW Dollarhide Tubb Drinkard API# (30-025-32374) Unit Letter C, Sec. 32, 24S, 38E Lea County, New Mexico

State of New Mexico Energy and Minerals Department Oil Conservation Commission 2040 South Pacheco Santa Fe, New Mexico 87505

Attention: Mr. Ben Stone

Texaco Exploration and Production Inc. respectfully requests approval to fracture the West Dollarhide Drinkard Unit #146 WIW. This well is a unique injector in that it has never allowed sufficient injection under the fracturing pressure limitation since it was drilled in June 1994.

Please find attached, an explanation of the fracture stimulation proposal and also a procedure.

If you have any question concerning this application, please contact Alan Holly or Paula Ives at (505) 397-0449 or (505) 397-0432.

Yours very truly,

-Paula S. Ives Engineer Assistant

Approval____/

Date

Attachments

Cu cc: Chris Williams/NMOCD/Hobbs

9/8/17 Chris talked to Ben both agree they will not approve. Ben will send letter.

٠

West Dollarhide Drinkard Unit #146 WIW

The WDDU #146 is a unique injector in that it has never allowed sufficient injection under the fracturing pressure limitation since it was drilled (6/94). Eventhough this well was acidized with 7,500 gallons of 15% NEFE upon completion, the injection rate has never exceeded 170 bwpd under the maximum pressure of 1,350 psi that was determined from a Step-Rate test soon after it was completed. As a result, attempts to inject into this well have been unsuccessful and it has been shut in since June of 1996.

In an attempt to establish a sufficient injection rate and consequently an increased sweep efficiency, I propose that a hydraulic fracturing treatment be performed on this well. The purpose would be to increase the conductivity of the formation further away from the wellbore so that a flow path will be created between the injector and producers. Once this flow path is established, I believe we will see an increase in the adjacent wells production. The challenge is realized, though, that height growth must be limited, but there are many ways to contain height growth. I feel that this is the only way that communication between the adjacent producers and the subject well will be attained.

WDDU #146 WIW WORKOVER PROCEDURE

DATE:	8/15/97
WELL:	West Dollarhide Drinkard Unit #146 WIW
CURRENT:	Perf's: 6,495' - 6,659', 432 holes, 120°, 4jspf, 108ft
TUBING:	2 3/8"HDPE, 4.7#, J-55, 8rd EUE
CASING:	5 1/2" 15.5#, WC-50 LTC
DEPTH:	TD: 6,920' PBTD: 6,886' KBD:13'
WORK:	Frac the Drinkard to induce injection.
PREPARED BY:	Alan Holly

- 1.) Install BOP and EWRAP unit.
- 2.) Release Packer, strap while coming out of hole with 2 3/8" injection tubing and packer. Install thread protectors. If sulfate scale or paraffin are evident contact engineer or workover foreman.
- 4.) Change rams to 2 7/8" and TIH with 2 7/8" Workstring and Sonic Hammer tool. Acidize the perfs through the Sonic Hammer tool as per the attached recommendation.
- 5.) TOH with 2 7/8" WS and Sonic Hammer tool.
- 6.) Change rams to 3 1/2" and TIH with 3 1/2" 9.3# frac tubing with a 5 1/2" 10K Frac Packer. Test tubing into hole to 8,000 psi. Set packer at +/- 6,450' and load backside.
- 7.) Test annulus to 500 psi. Install pressure relief valve on annulus set for 1,000 psi.
- 8.) RU Dowell. Test surface lines to 8,000 psi. Frac the zone as per the attached recommendation.
- 9.) Flow or Swab back load until well is dead.
- 10.)TOH with 3 1/2" frac tubing and packer.
- 11.)TIH with 2 7/8" Work String and bit. Clean out sand to PBTD: +/- 6,880'. If circulation can not be established, trip tubing and run a hydrostatic bailer on tubing to clean out. TOH.
- 12.)Place well on Injection.

FOREMAN: Fred Reynolds (505)395-2423 ENGINEER: Alan Holly (505)397-0449 LEASE OPERATOR: Larry O'Neal (505)369-6692 DOWELL SCHLUMBERGER: Lori Ward/Hank Horton (505)397-0435

WDDU #146 Acidizing Procedure

Drinkard 6,495' - 6,659'

1.) RU Dowell Schlumberger.

- 2.) Acidize Perfs w/3,000 gallons of 15% HCL NEFE, at 1-2 BPM(Max TP 4000 psi) as follows:
 - a. RU stripping head and enough hose to allow the movement of a full stand of tubing (approximately 65ft.)
 - b. Begin pumping 2% KCL water-when tubing capacity has been pumped, increase rate to 4-5 bpm; reciprocating the Sonic Hammer across the interval.
 - c. Begin acid stage (determined by dividing total footage and multiplying acid/ft by footage in stage). Displace acid stage across interval with 2% KCL while reciprocating the tool across the interval.
 - d. Make a connection and once again begin pumping KCL followed by the next acid stage, and flush.
 - e. Continue with steps b-d until entire perforated interval has been treated.

WDDU #146 Frac Procedure

Drinkard: 6,495' - 6,659'

1.) Frac the Drinkard zone with 15,000 gallons of 40# borate crosslinked gel, 26,500 lbs of 20/40 Ottawa and 8,000 lbs of 20/40 Brady resin coated sand down tubing as follows:

Pad	6,500 gallons	40# Borate Crosslinked
2 ppg	750 gallons	40# Borate Crosslinked
4 ppg	1,000 gallons	40# Borate Crosslinked
6 ppg	1,000 gallons	40# Borate Crosslinked
7 ppg	1,000 gallons	40# Borate Crosslinked
8 ppg	1,000 gallons	40# Borate Crosslinked
8 ppg	1,000 gallons	40# Borate Crosslinked
8 ppg resin	1,000 gallons	40# Borate Crosslinked
Flush	2,400 gallons	20# Linear Gel

NOTES:

۲,

- 1.) Desired rate: 40 BPM
- 2.) Maximum Tubing Pressure: 8,000 psi
- 3.) Anticipated Tubing Pressure: 4,000 psi
- 4.) Stair Step sand (do not ramp)
- 5.) Flush will be called as soon as sand concentration begins to drop at the blender.

Nipple up flowback equipment (flowback lines should be oriented so that flow can be directed to a pit or tank. All right angle bends to have targeted tees).

2.) Flush 2 bbls short of top perf with slickwater.

WDDU #146: WINJ Injection Increase-(8/5/97)

	Well: 146	ID: 3002532374 Type: WINJ Monthly	NINJ Mon	thly			
⊇							
• •		Ac ~8M					
ł		gal 15%	9.				
•		ЫО					
-							
(÷.					
103+					•••		
				27			
,							
,							
-7							
-							
. (
102							
)							
11							
					-		
,							
101			Ba				
,							
,							
-							
100+	<u>1</u> 03. 1	ᢣᢒᠯᢩᢣᢕᡃᠣᡃᡇᡃᠣ			atototot	لېد ن ده ې د ولو	
		5	•	Wipd		Wipre Y	
				— ⊲ Bopd — ○ Mcfpd	ĺ		

.

Schlumberge	Dowell

FracCADE STIMULATION PROPOSAL

Operator	: Texaco
Well	: WDDU #146wiw
Field	: West Dollarhide
Formation	: Drinkard - Limestone/Dolomite

Well Location	:	7 mi. NE of Jal NM
County	:	Lea
State	:	New Mexico
Country	:	U.S.A.

Prepared for	: Hobbs OU - Eunice FMT	Service Point :	Hobbs, New Mexico
Proposal No.	:	Business Phone :	(505) 393-6186
Date Prepared	: 06-26-1997	FAX No. :	(505) 393-2132

Prepared by	: Alan Holly
Phone	: (505)397-0449
E-Mail Address	•

* Mark of Schlumberger

Discla mer Notice: This information is presented in good faith, but no warranty is given by and Dowell assumes no liability for advice or recommendations made concerning results to be obtained from the use of any product or service. The results given are estimates based on calculations produced by a computer model including various assumptions on the well, reservoir and treatment. The results depend on input data provided by the Operator and estimates as to unknown data and can be no more accurate than the model, the assumptions and such input data. The information presented is Dowell's best estimate of the actual results that may be achieved and should be used for comparison purposes rather than absolute values. The quality of input data, and hence results, may be improved through the use of end procedures which Dowell can assist in selection. use of certain tests and procedures which Dowell can assist in selecting.

The Operator has superior knowledge of the well, the reservoir, the field and conditions affecting them. If the Operator is aware of any conditions whereby a neighboring well or wells might be affected by the treatment proposed herein it is the Operator's responsibility to notify the owner or owners of the well or wells accordingly

Prices quoted are estimates only and are good for 30 days from the date of issue. Actual charges may vary depending upon time, equipment, and material ultimately required to perform these services

Freedom from infringement of patents of Dowell or others is not to be inferred.

Dowell

Client : Texaco Well : WDDU #146wiw Formation : Drinkard - Limestone/Dolomite District : Hobbs, New Mexico Country : U.S.A.

Section 1: Definitions

The following are definitions of terms used in this proposal.

FRACTURE HALF-LENGTH

refers to the length of one fracture wing from the wellbore to the fracture tip.

FLUID LENGTH

refers to the fracture half-length occupied by fluid and may include length without proppant which does not contribute to production.

PROPPED LENGTH

refers to the fracture half-length occupied by proppant and may include length which does not contribute to production due to low proppant concentration, proppant damage or other effects.

EFFECTIVE or APPARENT LENGTH

refers to the fracture half-length through which formation fluid can be produced and which may be expected to contribute to well productivity improvement.

Client	Техасо
Well :	WDDU #146wiw
Formation :	Drinkard - Limestone/Dolomite
District	Hobbs, New Mexico
Country	U.S.A.
•	

Section 3: Wellbore Configuration

Deviated Hcle	NO
Treat Down	TUBING
Flush Volume to 6495.0 ft	57.2 bbl

Tubing Data				
OD	Weight	ID	Depth	
(in)	(lb/ft)	(in)	(ft)	
3.500	9.3	2.992	6450.0	

	Casi	ng Data	
OD	Weight	ID	Depth
(in)	(lb/ft)	(in)	(ft)
5.500	15.5	4.950	6950.0

	Perforation Data								
Top MD	Top TVD	Bottom MD	Bottom TVD	Shot Density	Number	Diameter			
(ft)	(ft)	(ft)	(ft)	(shot/ft)		(in)			
6495.0	6495.0	6507.0	6507.0	4.00	48	0.32			
6510.0	6510.0	6524.0	6524.0	4.00	56	0.32			
6529.0	6529.0	6545.0	6545.0	4.00	64	0.32			

Client	:	Texadu
Well	:	WDDU #146wiw
Formation	:	Drinkard - Limestone/Dolomite
District	:	Hobbs, New Mexico
Country	:	U.S.A.

	Perforation Data								
Top MD (ft)	Top TVD (ft)	Bottom MD (ft)	Bottom TVD (ft)	Shot Density (shot/ft)	Number	Diameter (in)			
6495.0	6495.0	6507.0	6507.0	4.00	48	0.32			
6510.0	6510.0	6524.0	6524.0	4.00	56	0.32			
6529.0	6529.0	6545.0	6545.0	4.00	64	0.32			
6552.0	6552.0	6578.0	6578.0	4.00	104	0.32			
6580.0	6580.0	6586.0	6586.0	4.00	24	0.32			
6594.0	6594.0	6613.0	6613.0	4.00	76	0.32			
6617.0	6617.0	6621.0	6621.0	4.00	16	0.32			
6625.0	6625.0	6630.0	6630.0	4.00	20	0.32			
6653.0	6653.0	6659.0	6659.0	4.00	24	0.32			

Section 2: Zone Data

	Formation Transmissibility Properties									
Zone Name	Top MD (ft)	Height (ft)	Perm (md)	Porosity (%)	Res. Pressure (psi)	Gas Sat. (%)	Oil Sat. (%)	Water Sat. (%)		
Blinebry	5535.0	555.0	0.01	2.0	2200	35.0	40.0	25.0		
Tubb Upper	6090.0	85.0	0.01	2.0	2200	35.0	40.0	25.0		
Tubb Main 1	6175.0	225.0	0.1	1.0	2200	35.0	40.0	25.0		
Tubb Main 2	6400.0	130.0	0.5	1.0	2200	35.0	40.0	25.0		
Drinkard	6530.0	125.0	1	6.0	2200	35.0	40.0	25.0		
Abo Upper	6655.0	100.0	1	3.0	2200	35.0	40.0	25.0		
Abo Lower	6755.0	48.8	1	3.0	2200	35.0	40.0	25.0		
Below	6803.8	48.7	1	10.0	3196	35.0	40.0	25.0		

Section 3: Zone Data

	Formation Mechanical Properties									
Zone Name	Top MD (ft)	Zone Height	Frac Grad.	Insitu Stress	Youngs Modulus	Poissons Ratio	Tough- ness			
Dlinebry	5535.0	(ft) 555.0	(psi/ft) 0.850	(psi) 4941	(psi) 3.924E+06	0.30	(psi.in0.5) 500			
Blinebry	6090.0	85.0	0.682	4941	3.924E+06	0.30	500			
Tubb Upper Tubb Main 1	6175.0	225.0	0.620	3898	1.203E+07	0.30	750			
Tubb Main 1	6400.0	130.0	0.597	3858	1.203E+07	0.25	750			
Drinkard	6530.0	125.0	0.599	3949	5.264E+06	0.25	500			
Abo Upper	6655.0	100.0	0.585	3920	1.080E+07	0.25	750			
Abo Lower	6755.0	48.8	0.578	3920	1.080E+07	0.25	750			
Below	6803.8	48.7	0.626	4274	5.619E+06	0.20	1200			

Texau
WDDU #146wiw
Drinkard - Limestone/Dolomite
Hobbs, New Mexico
U.S.A.

Section 4: Zone Data

Zone Properties								
Zone Number	1	2	3					
Zone Name	Blinebry	Tubb Upper	Tubb Main 1					
Top MD (ft)	5535.0	6090.0	6175.0					
Top TVD (ft)	5535.0	6090.0	6175.0					
Zone Height Data								
Gross Height (ft)	555.0	85.0	225.0					
Leakoff Height (ft)	555.0	85.0	225.0					
Net Height (ft)	555.0	85.0	225.0					
Rock Type	SILTSTONE	SILTSTONE	DOLOMITE					
Depth Stress Profile								
Frac Gradient (psi/ft)	0.850	0.682	0.620					
Insitu Stress (psi)	4941	4182	3898					
Reservoir Pressure (psi)	2200	2200	2200					
Mechanical Properties								
Young's Modulus (psi)	3.924E+06	3.924E+06	1.203E+07					
Poisson's Ratio	0.30	0.30	0.25					
Toughness (psi.in0.5)	500	500	750					
Specific Gravity	2.65	2.65	2.95					
Embedment Strength (psi)	60000	60000	100000					
Limestone (%)	10.0	10.0	0.0					
Dolomite (%)	30.0	30.0	100.0					
Transmissibility Properties	5							
Permeability (md)	0.01	0.01	0.1					
Porosity (%)	2.0	2.0	1.0					
Form. Volume Factor (bbl/stb)	1.01	⁻ 1.01	1.01					
Total Compressibility (1/psi)	1.02E-5	1.02E-5	1.34E-5					
Oil Saturation (%)	40.0	40.0	40.0					
Gas Saturation (%)	35.0	35.0	35.0					
H ₂ O Saturation (%)	25.0	25.0	25.0					

Zone Properties (continued)							
Zone Number	4	5	6				
Zone Name	Tubb Main 2	Drinkard	Abo Upper				
Top MD (ft)	6400.0	6530.0	6655.0				
Top TVD (ft)	6400.0	6530.0	6655.0				
Zone Height Data							
Gross Height (ft)	130.0	125.0	100.0				
Leakoff Height (ft)	130.0	125.0	100.0				
Net Height (ft)	130.0	125.0	100.0				
Rock Type	DOLOMITE	LIMESTONE	DOLOMITE				
Depth Stress Profile							
Frac Gradient (psi/ft)	0.597	0.599	0.585				
Insitu Stress (psi)	3858	3949	3920				
Reservoir Pressure (psi)	2200	2200	2200				
Mechanical Properties							
Young's Modulus (psi)	1.203E+07	5.264E+06	1.080E+07				
Poisson's Ratio	0.25	0.25	0.25				
Toughness (psi.in0.5)	750	500	750				
Specific Gravity	2.95	2.71	2.95				
Embedment Strength (psi)	100000	60000	100000				
Limestone (%)	0.0	75.0	20.0				
Dolomite (%)	100.0	5.0	80.0				
Transmissibility Properties	3						
Permeability (md)	0.5	1	1				
Porosity (%)	1.0	6.0	3.0				
Form. Volume Factor (bbl/stb)	1.01	1.01	1.01				
Total Compressibility (1/psi)	1.34E-5	6.76E-6	8.76E-6				
Oil Saturation (%)	40.0	40.0	40.0				
Gas Saturation (%)	35.0	35.0	35.0				
H ₂ O Saturation (%)	25.0	25.0	25.0				

Client	:	Texado
Well	:	WDDU #146wiw
Formation	:	Drinkard - Limestone/Dolomite
District	:	Hobbs, New Mexico
Country	:	U.S.A.

Zone Properties (continued)								
Zone Number	7	8						
Zone Name	Abo Lower	Below						
Top MD (ft)	6755.0	6803.8						
Top TVD (ft)	6755.0	6803.8						
Zone Height Data								
Gross Height (ft)	48.8	48.7						
Leakoff Height (ft)	48.8	48.7						
Net Height (ft)	48.8	48.7						
Rock Type	DOLOMITE	CLEAN-						
		SANDSTONE						
Depth Stress Profile								
Frac Gradient (psi/ft)	0.578	0.626						
Insitu Stress (psi)	3920	4274						
Reservoir Pressure (psi)	2200	3196						
Mechanical Properties								
Young's Modulus (psi)	1.080E+07	5.619E+06						
Poisson's Ratio	0.25	0.20						
Toughness (psi.in0.5)	750	1200						
Specific Gravity	2.95	2.50						
Embedment Strength (psi)	100000	60000						
Limestone (%)	20.0	0.0						
Dolomite (%)	80.0	0.0						
Transmissibility Properties		,						
Permeability (md)	1	1						
Porosity (%)	3.0	10.0						
Form. Volume Factor (bbl/stb)	1.01	1.01						
Total Compressibility (1/psi)	8.76E-6	5.61E-6						
Oil Saturation (%)	40.0	40.0						
Gas Saturation (%)	35.0	35.0						
H ₂ O Saturation (%)	25.0	25.0						

Section 5: Propped Fracture Schedule

The following is the Pumping Schedule to achieve a propped fracture half-length (X_f) of 105.9 ft with an average conductivity (K_fw) of 731 md.ft.

	Job Description							
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)		
PAD	40.0	YF140D	6500	40.0		0.0		

 Client
 : Tex_

 Well
 : WDDU #146wiw

 Formation
 : Drinkard - Limestone/Dolomite

 District
 : Hobbs, New Mexico

 Country
 : U.S.A.

	Job Description									
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)				
2 PPA	40.0	YF140D	750	40.0	20/40Brady 20/40	2.0				
4 PPA	40.0	YF140D	1000	40.0	20/40Brady 20/40	4.0				
6 PPA	40.0	YF140D	1000	40.0	20/40Brady 20/40	6.0				
7 PPA	40.0	YF140D	1000	40.0	20/40Brady 20/40	7.0				
8 PPA	40.0	YF140D	2000	40.0	20/40Brady 20/40	8.0				
Flush	40.0	WF120	2401	20.0		0.0				

Fluid Totals						
12250 gal	of	YF140D				
2401 gal	of	WF120				

Proppant Totals					
	34500 lb	of	20/40Brady 20/40		

	Job Execution									
Stage Name	Stage Fluid Volume (gal)	Cum. Fluid Volume (gal)	Stage Slurry Volume (bbl)	Cum. Slurry Volume (bbl)	Stage Prop (lb)	Cum. Prop. (lb)	Avg. Surface Pressure (psi)	Stage Time (min)	Cum. Time (min)	
PAD	6500	6500	154.8	154.8	0	0	3886	3.9	3.9	
2 PPA	750	7250	19.5	174.2	1500	1500	3835	0.5	4.4	
4 PPA	1000	8250	28.1	202.3	4000	5500	3883	0.7	5.1	
6 PPA	1000	9250	30.3	232.6	6000	11500	3970	0.8	5.8	
7 PPA	1000	10250	31.3	264.0	7000	18500	4049	0.8	6.6	
8 PPA	2000	12250	64.8	328.8	16000	34500	5212	1.6	8.2	
Flush	2401	14651	57.2	386.0	0	34500	3104	1.4	9.6	

Section 6: Propped Fracture Simulation

The following are the results of the computer simulation of this Fracturing Proposal using a Pseudo 3-D Vertical model.

Propped Fracture Half-Length	105.9 ft
EOJ Hyd Height at Well	
Average Propped Width	0.074 im
Average Gel Concentration	2268.2 lb/mgal
Average Gel Fluid Retained Factor	
Average Conductivity	731 md.ft
Average Fcd	21.8
Net Pressure	306 pci
Efficiency	0.739

.

.

Client :		Te, J
Well :		WDDU #146wiw
Formation :	:	Drinkard - Limestone/Dolomite
District :	:	Hobbs, New Mexico
Country :	:	U.S.A.

	Simulation Results by Fracture Segment								
From (ft)	To (ft)	Prop. Conc. at End of Pumping (PPA)	Propped Width (in)	Propped Height (ft)	Frac. Prop. Conc. (lb/ft²)	Frac. Gel Conc. (lb/mgal)	Fracture Conductivity (md.ft)		
0.0	26.5	7.6	0.088	298.8	0.79	266.6	841		
26.5	52.9	7.3	0.083	294.8	0.74	318.0	801		
52.9	79.4	5.4	0.059	237.7	0.53	435.8	618		
79.4	105.9	0.6	0.035	199.1	0.32	659.8	438		

Exposure Time Prediction by Stage								
Stage Name	Fluid Name	Pump Rate (bbl/min)	Fluid Volume (gał)	Perforation Injection Temp. (degF)	Exposure at BHST of 125 degF (min)	Exposure at Watch Temp. of 125 degF (min)		
PAD	YF140D	40.0	6500	99	8.1	8.1		
2 PPA	YF 140D	40.0	750	90	1.3	1.3		
4 PPA	YF 140D	40.0	1000	90	0.5	0.5		
6 PPA	YF 140D	40.0	1000	90	0.0	0.0		
7 PPA	YF 140D	40.0	1000	90	0.0	0.0		
8 PPA	YF 140D	40.0	2000	90	0.0	0.0		
Flush	WF120	40.0	2401					