NEW MEXICO OIL CONSERVATION COMMISSION HOBBS OFFICE FORE C-122 1957 NOV EDREY; sed 12-1-55 | | | | | | | - % | |-------------|------|----------|------|-----|-----|-------| | MULTI-POINT | BACK | PRESSURE | TEST | FOR | GAS | WELLS | | | Jalmat | | | _Formation | Yates | | | County | Lea | ¹⁰ 14 | |---|--|-------------------------------------|--|--|---|--|--|---|---------------------------------------|--| | | | | | | | | | | | -31-56/1-4-57 | | | | | | | | | | | | 3 | - Company | | | ng None | Prod | Pay: From | Cacin | YY | | <u>. </u> | U.BSU | GL1 | 775 | Bar.Pre | 355. 42.4 | | not - | ucing Thru | ı. Casır | | ru | onng, | Sin | Type we
gle-Brade | enhead-G. | G. or (| G.O. Dual | | Date | of Comple | etion: <u>1-</u> | 4-49 | Packe | r None | | Reservo | oir Temp | | | | | | | | | OBSERVI | ED DATA | | | | | | Test | ed Through | XXXXX | <u> </u> | (Meter) | | | | Type Tap | s | | | | | | w Data | | T | Tubing | Data | Casing Da | ata | <u> </u> | | | | LIMITE | | s. Diff. | Temp. | | Temp. | Press. | Temp. | Duration | | No. | (Line)
Size | (Orific | 7 | g h _w | o _F . | psig | °F. | psig | [⊃] F• | of Flow
Hr. | | SI | | | - | - " | | 16 | | | | 72 | | | | 2,000 | 855 | 9.51 | 96 | | _ | 909
864 | | 24 | | 1.
2. | | 2.000 | 808 | 25.00 | 89 | | | 829 | | 24 | | 3. | | 2.000 | 772 | 39.69 | 86 | | | 802 | | 24 | | 4.
5. | | 2,000 | 719 | | n | | | 754 * | | 24 | | | Coeffic | | | Pressure | FLOW CALC | Cemp. | Gravity | Compres
 Factor | | Rate of Flow Q-MCFPD | | No. | | ŀ | | | ract | ,01 | Factor | ractor | | Q-MOTPD | | No. | (24-Ho | ur) $$ | h _w p _f | psia | F _t | | $^{\mathrm{F}}g$ | $\mathbf{F}_{\mathbf{p}\mathbf{v}}$ | | @ 15.025 psia | | | 25.58 | | 1.33 | psia | F _t | ; <u> </u> | F _g
0.960 6 | F _{pv} | | @ 15.025 psia 2,325 | | | 25.58
25.58 | 1 | 3.27 | psia | F _t
0.9671
0.9732 | | 0.960 6
0.960 6 | | | @ 15.025 psia
2,328
3,681 | | | 25.58
25.58
25.58 | | 1.33
3.27
6.51 | psia | F _t
0.9671
0.9732
0.9759 | , | 0.760 6
0.760 8
0.760 8 | 1.073
1.074
1.070 | | @ 15.025 psia 2,328 3,681 4,529 | | | 25.58
25.58 | | 3.27 | psia | F _t
0.9671
0.9732 | , | 0.960 6
0.960 6 | 1.073 | | @ 15.025 psia
2,328
3,681 | | 1. 2. 3. 4. 5. as Li | 25.58
25.58
25.58
25.58
25.58 | ocarbon R | 1.33
3.27
76.51
6.20
atio_arbons | | F _t 0.9671 0.9732 0.9759 0.9804 CSSURE CA | | 0.3608
0.9608
0.9608
0.9608
0.9608
0.9608 | 1.073
1.076
1.070
1.066 | y Sepa | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas_ ing Fluid | | 1. 2. 3. 4. 5. as Li ravit | 25.58
25.58
25.58
25.58
25.58 | ocarbon R id Hydroc | atio_arbons(1-e^-s_ | PRE (F _c Q) ² | Ft
0.9671
0.9732
0.9759
0.9604
ESSURE CA
cf/bbl.
deg. | | 0.3608
0.9608
0.9608
0.9608
0.9608
0.9608 | 1.073
1.076
1.070
1.066 | y Sepa
y Flow
Pc 85 | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas ing Fluid 0.5 | | 1. 2. 3. 4. 5. 4. 5. No. No. | 25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
29.002 | pcarbon R id Hydroca | 1.33
3.27
76.51
6.20
arbons
(1-e ⁻⁵ | PRE (F _c Q) ² | Ft
0.9671
0.9732
0.9759
0.9804
CSSURE CA
cf/bbl.
deg. | LCU ATIO | 0.3608
0.9608
0.9608
0.9608
0.9608
0.9608
Pc_92 | 1.073
1.074
1.070
1.066
fic Gravit
fic Gravit
2.2 | y Sepa
y Flow
P ² 85 | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas ing Fluid 0.5 | | 1. 2. 3. 4. 5. 5. No. No. 2. | 25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
27.20
27.20
27.20
27.20 | Pt
769.5 | 1.33
3.27
76.51
6.20
arbons
(1-e-s | PRE (F _c Q) ² 4.41 | Ft 0.9671 0.9732 0.9759 0.9804 CSSURE CA cf/bbl. deg. (Fc (1- 0.5 | Q) ² e ^{-s}) | 0.3608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608 | 1.073
1.074
1.070
1.066
fic Gravit
fic Gravit
2.2
P _c -P _w ²
80.5
139.9 | y Sepa
y Flow
Pc 85 | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas ing Fluid 0.5 | | 1. 2. 3. 4. 5. 1. No. 1. 2. 3. | 25.58
25.58
25.58
25.58
26.58
27.2
28.2
29.502
29.502 | Pt 769.5 | 1.33
3.27
76.51
6.20
arbons
_(1-e ⁻⁵)
F _c Q
2.10
3.31 | PRE (F _c Q) ² 4.41 10.96 6.65 | Ft 0.9671 0.9732 0.9759 0.9804 CSSURE CA cf/bbl. deg. (Fc (1- 0.5 1.2 | Q) ² -e ^{-s}) | 0.7608
0.7608
0.7608
0.9608
0.9608
ONS
Speci
Pc_92
Pw ²
70.0
10.6 | 1.073
1.074
1.070
1.066
fic Gravit
fic Gravit
2.2
P _c -P _w ²
80.5
139.9 | y Sepa
y Flow
Pc 85 | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas ing Fluid 0.5 | | 1. 2. 3. 4. 5. No. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
27.20
27.20
27.20
27.20 | Pt
769.5 | 1.33
3.27
76.51
6.20
arbons
(1-e-s | PRE (F _c Q) ² 4.41 | Ft 0.9671 0.9732 0.9759 0.9804 CSSURE CA cf/bbl. deg. (Fc (1- 0.5 | Q) ² -e ^{-s}) | 0.3608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608
0.9608 | 1.073
1.074
1.070
1.066
fic Gravit
fic Gravit
2.2
P _c -P _w ²
80.5
139.9 | y Sepa
y Flow
Pc 85 | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas ing Fluid 0.5 | | 1. 2. 3. 4. 5. No. 1. 2. 3. 4. 5. Absol COMPA ADDRE | 25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25 | Pt 769.5 709.3 664.6 588.6 2121: 15 | Atio_arbons_(1-e ⁻⁵) F _c Q 2.10 3.31 4.08 5.69 | PRE (F _c Q) ² 1.41 0.96 6.65 | Ft 0.9671 0.9732 0.9759 0.9804 CSSURE CA cf/bbl. deg. (Fc (1- 0.5 1.2 1.9 | Q) ² -e ^{-s}) | 0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608 | 1.073
1.074
1.070
1.066
fic Gravit
fic Gravit
2.2
P _c -P _w ²
80.5
139.9 | y Sepa
y Flow
Pc 85 | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas ing Fluid 0.5 | | 1. 2. 3. 4. 5. No. 1. 2. 3. 4. 5. Absol COMPA ADDRE | 25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25.58
25 | Pt 769.5 709.3 664.6 588.6 2121: 15 | Atio_arbons_(1-e ⁻⁵) F _c Q 2.10 3.31 4.08 5.69 | PRE (F _c Q) ² 1.41 0.96 6.65 | Ft 0.9671 0.9732 0.9759 0.9804 CSSURE CA cf/bbl. deg. (Fc (1- 0.5 1.2 1.9 | Q) ² -e ^{-s}) 1 7 1 6 7 | 0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608
0.7608 | 1.073
1.074
1.070
1.066
fic Gravit
fic Gravit
2.2
P _c -P _w ²
80.5
139.9 | y Sepa
y Flow
Pc 85 | @ 15.025 psia 2,328 3,681 4,529 6,325 rator Gas ing Fluid 0.5 | REMARKS 24/2 / ## INSTRUCTIONS This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe. The log log paper used for plotting the back pressure curve shall be of at least three inch cycles. ## NOMENCLATURE - Q = Actual rate of flow at end of flow period at W. H. working pressure (P_W). MCF/da. @ 15.025 psia and 60° F. - PcI 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia - Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia - Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia - P_f Meter pressure, psia. - hw Differential meter pressure, inches water. - Fg Gravity correction factor. - Ft Flowing temperature correction factor. - F_{pv} Supercompressability factor. - n I Slope of back pressure curve. - Note: If $P_{\rm W}$ cannot be taken because of manner of completion or condition of well, then $P_{\rm W}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\rm t}$.